Security of assembly programs against faults

Innovation

Target

Improve **security**, **availability** and **fault tolerance** of secure integrated circuits based on a microcontroller

Design a **fault tolerant** structure for an **assembly code** on a standard up-to-date microcontroller versus fault injections from a realistic **fault model**

Ecole Nationale

Supérieure des Mines

Two complementary approaches

Fault model

EM injections on µ-controllers (ATmega128 and STM32)

→ Build a realistic set of attack possibilities so we can understand the fault model more clearly and give a list of possible attack paths

Current results:

- inject some faults on the bus transfers
- skip some assembly instructions
- replace some instructions by others
- change some register values

Work in collaboration with Amine Dehbaoui (ENSM.SE)

2 Fai

Fault tolerance

Fault model made of **instruction skips** and data bus corruptions

➔ Propose a fault-tolerant code structure which could ensure a correct execution of the program even with possible instruction skips and bus corruptions

Current results:

- design a duplication-based countermeasure
- temporal redundancy in a short time interval
- could be easily adapted to any compiled code
- formal proof for the correctness with Vis

Standard code ADD CMP B	e R1, R1, #1 R1, #9 <label></label>	C
Work in collat Karine Heyde	ooration wit mann (LIP	- h 6)

Fault tolerant code		
R3, R1, R1		
R3, R1, R1		
R1, R3		
R1, R3		
R1, #9		
R1, #9		
<label></label>		
<label></label>		

Current issues

- Fault model: perform a more precise characterization of the instruction replacement faults
- Fault tolerance: experimentally test our fault tolerance approach to evaluate its interest

Ph.D student: Joint advisor: Advisor:

Nicolas Moro Bruno Robisson Emmanuelle Encrenaz nicolas.moro@mines-stetienne.fr bruno.robisson@cea.fr emmanuelle.encrenaz@lip6.fr