
Nicolas MORO

Thesis supervised by Karine HEYDEMANN (LIP6)

Under the direction of Emmanuelle ENCRENAZ (LIP6)

and Bruno ROBISSON (CEA)

SECURITY OF ASSEMBLY

PROGRAMS AGAINST FAULT

ATTACKS ON EMBEDDED

PROCESSORS

13TH NOVEMBER 2014 – PARIS

Some parts of the presented works have been done in

cooperation with Amine Dehbaoui

(CEA)

EMBEDDED SYSTEMS

Embedded systems :

• Are autonomous electronic systems

• Are widely used and have many applications

| 13th November 2014 Nicolas Moro - Thesis defense | Page 2

EMBEDDED SYSTEMS SECURITY

• Those systems can be attacked

• Those attacks generally aim at :

Doing reverse-

engineering

Bypassing a

protection
Getting sensitive

data

| 13th November 2014 Nicolas Moro - Thesis defense | Page 3

EMBEDDED SYSTEMS SECURITY

Embedded systems security is very important for :

Manufacturers of smart cards
Pay-TV, banking cards, access cards, …

Manufacturers of consumer products
Locked systems, which include payment systems, …

Administrations and governments
Digital identity documents

| 13th November 2014 Nicolas Moro - Thesis defense | Page 4

PHYSICAL ATTACKS ON EMBEDDED SYSTEMS

Physical attacks
• require an access to the component

• aim at exploiting the vulnerabilities of integrated circuits

• are a serious threat for embedded systems

| 13th November 2014 Nicolas Moro - Thesis defense | Page 5

TWO KINDS OF PHYSICAL ATTACKS

• Side-channel analysis attacks

• Fault injection attacks

0A 0D 0C D5 FF ...

01 0D 0C D5 FF ...

| 13th November 2014 Nicolas Moro - Thesis defense | Page 6

DIFFERENT FAULT INJECTION MEANS

Focused

light
Electromagnetic

waves

Clock

signal

Power supply

voltage

Temperature

| 13th November 2014 Nicolas Moro - Thesis defense | Page 7

COUNTERMEASURES AGAINST FAULT ATTACKS

1 – Physical sensors
Light detectors, voltage modification detectors, …

Some countermeasures put at different levels :

2 – Mécanismes de détection ou tolérance aux fautes

Op Op

Comparison

Result

Redundancy Parity bits and error

correcting codes

Mathematical

properties of

algorithms

| 13th November 2014 Nicolas Moro - Thesis defense | Page 8

PULSED ELECTROMAGNETIC FAULT INJECTION

Can bypass some existing countermeasures

• Quite recent technique

(theoretical in 2002, in practice since 2007)

• An electrical pulse is sent to an injection

antenna

• Electromagnetic coupling with the power

grid of the circuits

• Semi-local effect

• Quite easy to set-up

Markettos, 2011 – Dehbaoui, 2012 – Zussa, 2014

| 13th November 2014 Nicolas Moro - Thesis defense | Page 9

OBJECTIVE OF THIS THESIS

Objective of this thesis :

Propose software countermeasures against

electromagnetic injection attacks

• Some new attacks with EM injection have been achieved

 new countermeasures are necessary

Hardware countermeasures Software countermeasures

• Requires significant changes

• Only for circuit manufacturers

• Need a finished circuit for testing

• More flexible changes

• Can be applied to processors

• Easier to test

• Difficult to model the impact of an EM injection on the execution

of a program assembly level

| 13th November 2014 Nicolas Moro - Thesis defense | Page 10

CHOSEN APPROACH FOR THIS THESIS

Definition of a fault model
Study of the effects of a fault injection on an assembly program

Definition of a countermeasure
Résistant against the faults of the model and formally verified

Experimental evaluation of its efficiency
Experimental tests on isolated instructions and more complex codes

| 13th November 2014 Nicolas Moro - Thesis defense | Page 11

CHOSEN APPROACH FOR THIS THESIS

Study and

usage of the

fault

injection

means

Definition of

fault models

at a higher

level

Design of

counter-

measures

based on

these models

Dehbaoui, 2012

Roscian, 2013

Schmidt, 2014

Zussa, 2014

Laser

EM waves

Voltage glitch

Clock glitch

Balasch, 2011

Temperature

Agoyan, 2010

Barenghi, 2012

Instruction skip

Balasch, 2011

Trichina, 2010

Instruction

corruption

Bit flip

Branches
Berthomé, 2012

Rauzy, 2013

Bar-El, 2006

Sere, 2011

Barenghi, 2010

Barbu, 2011

Redundancy

Java Card Formal methods

Christofi, 2013

| 13th November 2014 Nicolas Moro - Thesis defense | Page 12

OUTLINE OF THE PRESENTATION

I. Introduction

II. Conception of a fault injection bench

III. Validation of a fault model at assembly level

IV. Definition and verification of a software countermeasure

V. Test and experimental evaluation of the countermeasure

VI. Conclusion and perspectives

| 13th November 2014 Nicolas Moro - Thesis defense | Page 13

FAULT INJECTION EXPERIMENTAL SETUP

1. The experiment is driven from the PC

2. The target code is executed on the microcontroller

3. The microcontroller sends a trigger signal

4. The generator sends a voltage pulse

5. The microcontroller is stopped

6. The internal data is harvested

Control

of the

generator

Debug of the microcontroller

Pulse

Trigger signal

Control of the X Y Z table

Generator

| 13th November 2014 Nicolas Moro - Thesis defense | Page 14

• Fréquency of 56 MHz, clock period 17.8 ns

• Architecture ARMv7-M 32-bit (Harvard type)

THE ARM CORTEX-M3 PROCESSOR

 The Definitive Guide to the ARM Cortex-M3 – Joseph Yiu, Newnes, 2009

• ARM architecture in the majority of embedded systems

• Several secured processors based on an ARM Cortex-M

• The Cortex-M3 architecture is already used for some smart

cards or some processors for RFID communications

| 13th November 2014 Nicolas Moro - Thesis defense | Page 15

THE ARM CORTEX-M3 PROCESSOR

Thumb-2 instruction set
• RISC, 151 instructions encoded on 16 and 32 bits

• Load/store architectures : operations are performed on registers

add.w r1, r0, #1 Operation

Destination

register

Source

register

Immediate

value

(constant)

Suffix to force a 32-bit encoding

| 13th November 2014 Nicolas Moro - Thesis defense | Page 16

PIPELINE AND EXECUTION OF THE INSTRUCTIONS

 3 levels of pipeline (Fetch – Decode – Execute), no prefetch

Fetch Loading of the instruction into the instruction register

Decode Decoding, operand fetch, branch detection

Execute Execution of the instruction, writing of the results

| 13th November 2014 Nicolas Moro - Thesis defense | Page 17

PULSED ELECTROMAGNETIC FAULT INJECTION

The fault injection antenna is a copper coil

Keil ULINKpro JTAG debug probe
Enables to use the microcontroller in debug mode

Pulse generator
High voltage, high current

Time (ns)

V
o

lt
a

g
e

 (
V

)

| 13th November 2014 Nicolas Moro - Thesis defense | Page 18

OUTLINE OF THE PRESENTATION

I. Introduction

II. Conception of a fault injection bench

III. Validation of a fault model at assembly level

IV. Definition and verification of a software countermeasure

V. Test and experimental evaluation of the countermeasure

VI. Conclusion and perspectives

| 13th November 2014 Nicolas Moro - Thesis defense | Page 19

Studied parameters

DEFINITION OF A FAULT MODEL

• Enables to better understand the abilities of an attacker

• A big number of experimental parameters

• Their influence on the obtained faults must be studied

Position of

the antenna

Injection

time
Pulse

voltage

| 13th November 2014 Nicolas Moro - Thesis defense | Page 20

INFLUENCE OF THE POSITION OF THE ANTENNA

ldr r8,=0x12345678 loads a 32-bit word from the Flash memory

• Variation of X and Y on a square with 3mm side

• Fixed voltage, fixed injection time, fixed position on the Z axis

A local effect of the fault injection technique

A very small area to inject faults

Hamming

weight of the

loaded word

Y

X

| 13th November 2014 Nicolas Moro - Thesis defense | Page 21

 Two distinct time intervals

Different kinds of faults

 For some injection times, we obtained 100% of faults

INFLUENCE OF THE INJECTION TIME

ldr r8,=0x12345678 loads a 32-bit word from the Flash memory

• Variation of the

injection time

• Fixed voltage

• Fixed antenna

| 13th November 2014 Nicolas Moro - Thesis defense | Page 22

INFLUENCE OF THE PULSE’S VOLTAGE

Voltage Output value

172V 1234 5678

174V 9234 5678

176V FE34 5678

178V FFF4 5678

180V FFFD 5678

182V FFFF 7F78

184V FFFF FFFD

186V FFFF FFFF

ldr r4,=0x12345678 loads a 32-bit word from the Flash memory

• Variation of the pulse voltage

• Fixed antenna, fixed injection time

 A set at 1 effect on the bits

 The effect is related to the

increase of the voltage

Only obtained when loading

data from the Flash memory

| 13th November 2014 Nicolas Moro - Thesis defense | Page 23

Transfer of an instruction on the HRDATAI instruction bus

1 – The address of the instruction is put on the HADDRI bus

REGISTER-TRANSFER LEVEL FAULT MODEL

| 13th November 2014 Nicolas Moro - Thesis defense | Page 24

2a – The binary encoding of the instruction is put on the HRDATAI bus

 (end of the following clock cycle)

REGISTER-TRANSFER LEVEL FAULT MODEL

Transfer of an instruction on the HRDATAI instruction bus

| 13th November 2014 Nicolas Moro - Thesis defense | Page 25

2b – The address of the next instruction is put on the HADDRI bus

REGISTER-TRANSFER LEVEL FAULT MODEL

Transfer of an instruction on the HRDATAI instruction bus

| 13th November 2014 Nicolas Moro - Thesis defense | Page 26

3 – Corruption of the transfer of the instruction on the HRDATAI bus

REGISTER-TRANSFER LEVEL FAULT MODEL

Transfer of an instruction on the HRDATAI instruction bus

| 13th November 2014 Nicolas Moro - Thesis defense | Page 27

Transfer of a piece of data on the HRDATA data bus

1 – The address of the piece of data is put on the HADDR bus

REGISTER-TRANSFER LEVEL FAULT MODEL

| 13th November 2014 Nicolas Moro - Thesis defense | Page 28

2a – Corruption of the transfer of the pice of data on the HRDATA bus

REGISTER-TRANSFER LEVEL FAULT MODEL

Transfer of a piece of data on the HRDATA data bus

| 13th November 2014 Nicolas Moro - Thesis defense | Page 29

2b – Corruption of the transfer of other instructions on the HRDATAI bus

REGISTER-TRANSFER LEVEL FAULT MODEL

Transfer of a piece of data on the HRDATA data bus

| 13th November 2014 Nicolas Moro - Thesis defense | Page 30

EXPERIMENTAL VALIDATION OF THIS RTL FAULT MODEL

Injection time (ns)

Hamming

weight
in r0

Voltage (V)

ldr r0, [pc,#40] loads a 32-bit word from the Flash memory

Instruction

fetch

Instruction

decode

(data fetch)

| 13th November 2014 Nicolas Moro - Thesis defense | Page 31

ldr r0, [pc,#40] loads a 32-bit word from the Flash memory

Hamming

weight
in r0

dans r0

Voltage (V)

Instruction

fetch

Instruction

decode

(data fetch)

EXPERIMENTAL VALIDATION OF THIS RTL FAULT MODEL

Injection time (ns)

Possibility to corrupt the

transfers from the Flash memory

(transfers of instructions and data)

| 13th November 2014 Nicolas Moro - Thesis defense | Page 32

FAULTS ON THE DATA FLOW AND THE CONTROL FLOW

• Simulation of instruction corruptions

• Comparison with the experimental results

 How can we extract from the previous results a fault

model for the instruction replacements ?

 Search for replacements

 that can qui peuvent explain the obtained faults

| 13th November 2014 Nicolas Moro - Thesis defense | Page 33

OVERVIEW OF THE FAULT MODEL AT RTL LEVEL

Consequences regarding instructions

 Instruction replacements

 Instruction skips in some cases

nop 1011 1111 0000 0000 str r0, [r0, #0] 0110 0000 0000 0000

nop 1011 1111 0000 0000 nop 1011 1111 0000 0000

Consequences regarding data

 Corruption of the ldr from the Flash memory (encryption keys, …)

 Values with high Hamming weight easier to obtain (on this target)

Electromagnetic Fault Injection: Towards a Fault Model on a 32-bit Microcontroller
N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, E.Encrenaz – FDTC 2013, Santa-Barbara, USA

| 13th November 2014 Nicolas Moro - Thesis defense | Page 34

FAULT MODEL AT ASSEMBLY LEVEL

« nop » fault model (instruction skip)

• Can enable to skip a subroutine call

• Possible to detect some vulnerabilities on a program

Replacement by un nop statistically more frequent
• Writing into a dead register or a unused memory address

• Re-execution of a previous idempotent instruction (add r1,r2,r3 …)

• Replacement by an instruction without any effect (mov r0,r0 …)

 In which proportion do the injected faults have an effect

that is similar to an instruction skip (nop) ?

| 13th November 2014 Nicolas Moro - Thesis defense | Page 35

EVALUATION THE NOP MODEL’S COVERAGE RATE

Experiment on a

program that sums the

elements of a 2-value

array
tab[0] = 1 ; tab[1] = 2

Expected result : 3

Simulation of the

skip of every

instruction

1

2

3
Comparison

between the output

values and the

experimental results

| 13th November 2014 Nicolas Moro - Thesis defense | Page 36

| 13th November 2014 Nicolas Moro - Thesis defense | Page 37

EVALUATION THE NOP MODEL’S COVERAGE RATE

Experiment on a

program that sums the

elements of a 2-value

array
tab[0] = 1 ; tab[1] = 2

Expected result : 3

Simulation of the

skip of every

instruction

1

2

3
Comparison

between the output

values and the

experimental results

On the tested program, about 25%

of the faults obtained in practice

can be seen as an instruction skip

OUTLINE OF THE PRESENTATION

I. Introduction

II. Conception of a fault injection bench

III. Validation of a fault model at assembly level

IV. Definition and verification of a software countermeasure

V. Test and experimental evaluation of the countermeasure

VI. Conclusion and perspectives

| 13th November 2014 Nicolas Moro - Thesis defense | Page 38

 Many instruction replacements have an effect that is

equivalent to an instruction skip

 Some double faults are possible if the time between both

injections is high enough (a few µs for our bench)

ATTACK PATHS ENABLED BY THE MODEL

 How can we guarantee a correct execution

 with a potential instruction skip by an attacker ?

Function f Function f Comparison

t

| 13th November 2014 Nicolas Moro - Thesis defense | Page 39

COUNTERMEASURE AGAINST AN INSTRUCTION SKIP

1. Able to resist to a fault injection
 Based on a temporal redundancy principle

2. Resistant to double faults sufficiently far apart

 Instruction-level redundancy

3. Can be automatically applied

 Replacement sequence for every instruction

 Semantic equivalence regarding the initial instruction

 Principle to reinforce a full program

| 13th November 2014 Nicolas Moro - Thesis defense | Page 40

DIFFERENT CLASSES OF INSTRUCTIONS

add r1, r0, #1

add r1, r0, #1

add r1, r0, #1

add r1, r1, #1

add r12, r1, #1

add r12, r1, #1

mov r1, r12

mov r1, r12

Idempotent

instructions

Separable

instructions

Duplication not

correct if no fault

 Separation

then duplication

| 13th November 2014 Nicolas Moro - Thesis defense | Page 41

DIFFERENT CLASSES OF INSTRUCTIONS

add r1, r0, #1

add r1, r0, #1

add r1, r0, #1

push {r1, r2, r3, lr}

stmdb sp, {r1, r2, r3, lr}

stmdb sp, {r1, r2, r3, lr}

sub r12, sp, #16

sub r12, sp, #16

mov sp, r12

mov sp, r12

Idempotent

instructions

Separable

instructions

 Separation

then duplication

| 13th November 2014 Nicolas Moro - Thesis defense | Page 42

DIFFERENT CLASSES OF INSTRUCTIONS

add r1, r0, #1

add r1, r0, #1

add r1, r0, #1

Idempotent

instructions

mrs r12, apsr

mrs r12, apsr

umull r10, r11, r3, r4

umull r10, r11, r3, r4

adds r9, r10, r1

adds r9, r10, r1

addc r10, r11, r2

addc r10, r11, r2

mov r1, r9

mov r1, r9

mov r2, r10

mov r2, r10

msr apsr, r12

msr apsr, r12

umlal r1, r2, r3, r4

r1:r2 = r3*r4 + r1:r2

Multiplication and

addition over 64 bits

| 13th November 2014 Nicolas Moro - Thesis defense | Page 43

 adr r12, return_label

 adr r12, return_label

 add lr, r12, #1

 add lr, r12, #1

 b function

 b function

return_label

SUBROUTINE CALL INSTRUCTION (BL)

• Branch instruction can be duplicated…

but not subroutine call instructions
 (otherwise every subroutine would be executed twice)

 bl function

Puts the return addess into r12

Updates the return pointer lr

Branches to the subfunction

| 13th November 2014 Nicolas Moro - Thesis defense | Page 44

VERIFICATION OF THE COUTERMEASURE WITH MODEL-CHECKING

Properties to verify :
PC0

PC1

lr = PC1

pc = @sous_fonction

PC0

PC0_1

PC0_2

PC0_3

PC0_4

faute

faute

faute

faute

adr r12, label_retourbl sous_fonction
r12 = PC1

adr r12, label_retour

r12 = PC1

add lr, r12, #1

lr = r12 + 1

add lr, r12, #1
lr = r12 + 1

@sous_fonction

pc = lr

cpt++

PC0_5

faute

@sous_fonction

b sous_fonction
pc = @sous_fonction

PC1

label_retour

faute
b sous_fonction
pc = @sous_fonction

pc = PC1

cpt++

2. Every replacement

sequence is tolerant

to an instruction

skip

1. Every replacement

sequence has the

same semantics

than the instruction

it replaces

i c

| 13th November 2014 Nicolas Moro - Thesis defense | Page 45

VERIFICATION OF THE COUTERMEASURE WITH MODEL-CHECKING

Properties to verify :
PC0

PC1

lr = PC1

pc = @sous_fonction

PC0

PC0_1

PC0_2

PC0_3

PC0_4

faute

faute

faute

faute

adr r12, label_retourbl sous_fonction
r12 = PC1

adr r12, label_retour

r12 = PC1

add lr, r12, #1

lr = r12 + 1

add lr, r12, #1
lr = r12 + 1

@sous_fonction

pc = lr

cpt++

PC0_5

faute

@sous_fonction

b sous_fonction
pc = @sous_fonction

PC1

label_retour

faute
b sous_fonction
pc = @sous_fonction

pc = PC1

cpt++

2. Every replacement

sequence is tolerant

to an instruction

skip

1. Every replacement

sequence has the

same semantics

than the instruction

it replaces

i c

| 13th November 2014 Nicolas Moro - Thesis defense | Page 46

The verification step has a double purpose :

1. Verification of the equivalence of sequences

(with and without fault injections)

2. Help for the design of sequences
(enables to highlight the challenging cases)

AUTOMATIC APPLICATION OF THE COUNTERMEASURE

Implementation Overhead (cycles) Overhead (code size)

AES + 113.7% + 202%

MiBench AES + 186.4% + 189.9%

MiBench SHA0 + 122.8% + 178.2%

AES with CM on the

last two rounds

+ 18.6%

+ 282.5%

High overhead cost,

but comparable to the overhead of usual redundancy approaches

 Formal verification of a software countermeasure against instruction skip fault attacks

 N. Moro, K. Heydemann, E.Encrenaz, B. Robisson - Journal of Cryptographic Engineering, 2014

• An automatic application algorithm has been designed

| 13th November 2014 Nicolas Moro - Thesis defense | Page 47

OUTLINE OF THE PRESENTATION

I. Introduction

II. Conception of a fault injection bench

III. Validation of a fault model at assembly level

IV. Definition and verification of a software countermeasure

V. Test and experimental evaluation of the countermeasure

VI. Conclusion and perspectives

| 13th November 2014 Nicolas Moro - Thesis defense | Page 48

EXPERIMENTAL EVALUATION OF THE COUNTERMEASURE

• Countermeasure against a simplified model of attacker
(skip of an assembly instruction)

• Does not protect against the faults on the data flow

 Can be complemented with

• a fault detection countermeasure

• that also protects data loads

Countermeasures against fault attacks on software implemented AES
A. Barenghi, L. Breveglieri, I.Koren, G. Pelosi, F. Regazzoni – WESS 2010, New-York, USA

| 13th November 2014 Nicolas Moro - Thesis defense | Page 49

FAULT DETECTION COUNTERMEASURE

ldr r0, [pc, #40]

ldr r1, [pc, #38]

cmp r0, r1

bne error

ldr r0, [pc, #34]

• Detection of single faults
Instruction skip, some replacements, fault on the data flow

• Proposed for a restricted set of instructions
Arithmetic and logic, load-store

… but not branches, stack manipulation or flags use

• High overhead
In registers, code size and number of cycles

| 13th November 2014 Nicolas Moro - Thesis defense | Page 50

EXPERIMENTAL EVALUATION METHOD

Study of the impact of the countermeasures for :

• some isolated instructions

• some complex codes

Chosen isolated instructions :

Fault tolerance countermeasure Fault detection countermeasure

 adr r12, return_label

 adr r12, return_label

 add lr, r12, #1

 add lr, r12, #1

 b function

 b function

return_label

ldr r0, [pc, #40]

ldr r1, [pc, #38]

cmp r0, r1

bne error

 bl instruction
 ldr instruction

| 13th November 2014 Nicolas Moro - Thesis defense | Page 51

For both countermeasures :
• It is necessary to force a 32-bit encoding

For the tolerance countermeasure :
• On a subroutine call, 97% reduction of the output faults

For the detection countermeasure :
• On a data load, 98% reduction of the output faults

EVALUATION ON ISOLATED INSTRUCTIONS

 adr r12, return_label

 adr r12, return_label

ldr r0, [pc, #40]

ldr r1, [pc, #38]

| 13th November 2014 Nicolas Moro - Thesis defense | Page 52

EVALUATION ON COMPLEX CODES

Evaluated on a FreeRTOS-MPU implementation

Tolerance CM Function that changes the privilege level

Detection CM Function that initializes a task and sets its priority

For the tolérance countermeasure :
 26% reduction of the faults in the output register

 Effect that is probably more complex than an instruction skip

For the detection countermeasure :
 98% reduction of the faults in the output register

Experimental evaluation of two software countermeasures against fault attacks
N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, E. Encrenaz – IEEE HOST 2014, Arglinton, USA

| 13th November 2014 Nicolas Moro - Thesis defense | Page 53

COMBINATION OF THE TWO COUNTERMEASURES

 Both countermeasures are used to reinforce the same

code (an AES addRoundKey function)

• Detection CM: more efficient but cannot be applied everywhere

• With proposed CM: protection of the other instructions

 90% reduction for the faults, among the remaining ones

no usable fault for a cryptanalysis

| 13th November 2014 Nicolas Moro - Thesis defense | Page 54

OUTLINE OF THE PRESENTATION

I. Introduction

II. Conception of a fault injection bench

III. Validation of a fault model at assembly level

IV. Definition and verification of a software countermeasure

V. Test and experimental evaluation of the countermeasure

VI. Conclusion and perspectives

| 13th November 2014 Nicolas Moro - Thesis defense | Page 55

CONCLUSION

• An accurate fault model at assembly level

• Corruption of the transfers from the Flash memory

• Double-faults possible under certain conditions

• High percentage of instruction skips

• A countermeasure tolerant to an instruction skip

• Local redundancy at instruction-scale

• Formally verified with model-checking tools

• Automatically applicable to a generic code

• Reinforces especially branches and stack

| 13th November 2014 Nicolas Moro - Thesis defense | Page 56

CONCLUSION

• An experimental evaluation of two countermeasures

• With another fault detection countermeasure

• Importance of the encoding of instructions

• Combination of the two CM very efficient on an AES code

• First tests with DPA-like side-channel analysis techniques

The proposed fault tolerance countermeasure is a good

complement for the detection countermeasure for the

subroutine calls and the instructions for which it does not apply

| 13th November 2014 Nicolas Moro - Thesis defense | Page 57

PERSPECTIVES

 Improvement of the accuracy of fault models

• Towards a better understanding of instruction replacements

• Investigate the effects in the different levels of the pipeline

• Could enable to improve the definition of countermeasures

 Automatic application of the countermeausres by the compiler

• Generate reinforced code for some specified functions

 Test of those countermeasures with side-channel analysis

• Do they introduce vulnerabilities ?

• How to combine those countermeasures with

countermeasures against side-channel analysis ?

| 13th November 2014 Nicolas Moro - Thesis defense | Page 58

DIFFUSION OF THE RESULTS OF THIS THESIS

• 4 articles in conferences with proceedings
• COSADE 2013

• FDTC 2013

• IEEE HOST 2014

• IFIP/IEEE VLSI-SoC 2014

• 1 article in a workshop without proceedings
• PROOFS 2013

• 1 article in a peer-reviewed journal
• Journal of Cryptographic Engineering 2014

• 3 communications in workshops without proceedings
• Crypto’Puces 2013

• Chip-To-Cloud Security Forum 2013

• TRUDEVICE Workshop 2014

| 13th November 2014 Nicolas Moro - Thesis defense | Page 59

THANK YOU FOR YOUR ATTENTION

Any questions ?
Download the presentation
 PDF file

| 13th November 2014 Nicolas Moro - Thesis defense | Page 60

