
FAULT ATTACKS ON TWO SOFTWARE

COUNTERMEASURES

| Page 1

Nicolas Moro1,3, Karine Heydemann3, Amine Dehbaoui2 ,

Bruno Robisson1, Emmanuelle Encrenaz3

TRUDEVICE 2014 – MAY 29-30, PADERBORN, GERMANY

1 CEA
Commissariat à l’Energie Atomique et aux Energies Alternatives

2 ENSM.SE
Ecole Nationale Supérieure des Mines de Saint-Etienne

3 LIP6 - UPMC
Laboratoire d’Informatique de Paris 6

Sorbonne Universités - Université Pierre et Marie Curie

Amine Dehbaoui is now with Serma Technologies

Experimental evaluation of two software

countermeasures against fault attacks

N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, E. Encrenaz

IEEE HOST Symposium 2014, Arlington, VA, USA

INTRODUCTION AND MOTIVATIONS

Page 2 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

Concern: Security of embedded programs against fault attacks

 Many software countermeasures

 Defined by respect to a fault model

 Often based on redundancy principles

 Some recent schemes propose to add this redundancy at assembly level

 Can we evaluate the practical effectiveness of some

 assembly-level countermeasures against fault attacks ?

1 – Provide an experimental evaluation on single isolated instructions

2 – Provide an experimental evaluation on complex codes

OUTLINE

I. Experimental setup

II. Preliminaries about the fault model

III. Evaluation on simple codes

IV. Evaluation on a FreeRTOS implementation

V. Conclusion

Page 3 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

EXPERIMENTAL SETUP

Pulsed electromagnetic fault injection

Transient and local effect of the fault injection

 Standard circuits not protected against this technique

 Solenoid used as an injection antenna

 Up to 210V sent on the injection antenna, pulses width longer than 10ns

Page 4 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

Microcontroller based on an ARM Cortex-M3

- 130nm CMOS technology, ARMv7-M architecture

- Frequency 56 MHz, clock period 17.8 ns

- 16/32 bits Thumb-2 RISC instruction set

- Keil ULINKpro JTAG probe to debug the microcontroller

- 3-stage pipeline (Fetch – Decode – Execute), no prefetch

 The Definitive Guide to the ARM Cortex-M3 – Joseph Yiu, Newnes, 2009

EXPERIMENTAL SETUP

Page 5 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

 The experiment is driven by the computer

 The target code is runned on the microcontroller

 The pulse generator sends a voltage pulse

 The microcontroller is stopped

 The microcontroller’s internal data is harvested

Main experimental parameters

• Position of the injection antenna (fixed for this work)

• Electric parameters of the pulse (fixed for this work)

• Injection time of the pulse

• Executed code on the microcontroller

Generator

control

Debug

Pulse

T
rig

g
e

r s
ig

n
a

l

Motorized

X Y Z stage

Motorized

stage

control

Pulse generator

Hardware exceptions

UsageFault exceptions for illegal instructions are triggered

 Used to identify the impacted instruction for a given injection time

OUTLINE

I. Experimental setup

II. Preliminaries about the fault model

III. Evaluation on simple assembly codes

IV. Evaluation on a FreeRTOS implementation

V. Conclusion

Page 6 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

FAULT INJECTION ON A SINGLE 16-BIT LDR INSTRUCTION

27 MAI 2014
Page 7 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

Injection time (ns), by steps of 200ps

Hamming

weight
in r0

Pulse

voltage

(V)

ldr r0, [pc,#40] loads a 32-bit word into a register from the Flash memory

Instruction

fetch

Instruction

decode

(data fetch)

FAULT INJECTION ON A SINGLE 16-BIT LDR INSTRUCTION

27 MAI 2014
Page 8 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

ldr r0, [pc,#40] loads a 32-bit word into a register from the Flash memory

 Electromagnetic Fault Injection: Towards a Fault Model on a 32-bit Microcontroller

 N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, E.Encrenaz - FDTC Workshop, Santa-Barbara, 2013

Consequences regarding the instruction flow (instruction fetch)

 Instructions replacements

 Instruction skips under certain conditions (~ 20-30% of time)

Consequences regarding the data flow (instruction decode)

 Corruption of the ldr instructions from the Flash memory

OUTLINE

I. Experimental setup

II. Preliminaries about the fault model

III. Evaluation on simple assembly codes

IV. Evaluation on a FreeRTOS implementation

V. Conclusion

Page 9 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

GENERAL METHODOLOGY

27 MAI 2014
Page 10 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

 Two fault injection attemps, every 200 ps

 During a time inteval defined by hardware instructions

Relevant metric to evaluate the countermeasures ?
Replacement sequences add some instructions longer execution time

 more fault injections to do different number of results to compare

From a security point of view, effectiveness = reduction of faulty outputs

ldr r0, [pc, #40]

ldr r1, [pc, #38]

cmp r0, r1

bne <error>
ldr r0, [pc, #34]

150 ns 300 ns
1500 fault injection attempts

180 faulty outputs
3000 fault injection attemps

210 faulty outputs / 50 faulty o.

FAULT TOLERANCE COUNTERMEASURE

27 MAI 2014
Page 11 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

adr r1, <return_label>

adr r1, <return_label>

add lr, r1, #1

add lr, r1, #1

b <function>

b <function>

return_label

bl <function>

 Formal verification of a software countermeasure against instruction skip fault attacks

 N. Moro, K. Heydemann, E.Encrenaz, B. Robisson - Journal of Cryptographic Engineering, Springer, 2014

 Fault tolerance against one instruction skip

 Formally verified using model-checking tools

 A replacement sequence for every instruction

 No protection for the data flow

 Experiment performed on the bl instruction

 In the tested code, the subroutine modifies r0

FAULT INJECTION RESULTS

27 MAI 2014
Page 12 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

 Fewer faults by forcing the 32-bit encoding of instructions (orange curve)

 The countermeasure is not effective with 16-bit instructions (blue curve)

 The combination 32-bit inst + countermeasure is very effective (green curve)

FAULT DETECTION COUNTERMEASURE

27 MAI 2014
Page 13 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

ldr r0, [pc, #40]

ldr r1, [pc, #38]

cmp r0, r1

bne <error>

ldr r0, [pc, #34]

 Countermeasures against fault attacks on software implemented AES

 A. Barenghi, L. Breveglieri, I.Koren, G. Pelosi, F. Regazzoni – WESS Workshop, New-York, 2010

 Detects any single fault (instruction skips, replacements, data flow)

 Proposed for a restricted set of instructions (ALU, load-store)

 Tested for a ldr instruction from the Flash memory

FAULT DETECTION COUNTERMEASURE

27 MAI 2014
Page 14 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

 Faults for 16-bit and 32-bit encodings, some due to the corruption of the data transfer

 The FD countermeasure is not effective with a 16-bit encoding (blue curve)

 However, countermeasure + 32-bit encoding very effective (green curve)

OUTLINE

I. Experimental setup

II. Preliminaries about the fault model

III. Evaluation on simple assembly codes

IV. Evaluation on a FreeRTOS implementation

V. Conclusion

Page 15 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

FREERTOS AND TARGET CODES

27 MAI 2014
Page 16 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

msr control, r3

msr psp, r0

mov r0, #0

add lr, r1, #1

msr basepri, r0

ldr lr, =0xfffffffd

 Portable RTOS written in C, multitasking operating system

Fault tolerance countermeasure Changes priv. mode

prvRestoreContextOfFirstTask function

• At the OS initialization

• The systems starts in privileged mode

• Then it switches to unprivileged mode

An attacker may try to stay in privileged mode

To evaluate the effectiveness,

we observe the number of faults in the control register

FAULT TOLERANCE COUNTERMEASURE

27 MAI 2014
Page 17 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

 Not very good effectiveness for the fault tolerance countermeasure on this code

 The protected msr instruction is maybe too specific or the fault model too simplistic

 Further experiments are required to deeply analyze the effectiveness of this CM

FREERTOS AND TARGET CODES

27 MAI 2014
Page 18 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

Fault detection countermeasure ldr r0, [r0, #0]

str r0, [sp, #0]

movs r3, #0

movs r2, #128

movs r1, #0

ldr r0, =address_fct

bl <xTaskGenericCreate>

Arguments

for the

function

 uxPriority in r0

• During task creation

• Each task has its own priority level

• The priority level is loaded from the Flash

Code before calling xTaskGenericCreate

An attacker may try to change a priority level

To evaluate the effectiveness,

we observe the number of faults in this priority level

(in the xTaskGenericCreate function)

FAULT DETECTION COUNTERMEASURE

27 MAI 2014
Page 19 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

 The countermeasure when only applied to ldr instructions still misses some faults

 The countermeasure is very effective on this code when applied to every instruction

 However, not all the instructions can be protected with this countermeasure

 This countermeasure must be combined with other techniques against faults

OUTLINE

I. Experimental setup

II. Preliminaries about the fault model

III. Evaluation on simple assembly codes

IV. Evaluation on a FreeRTOS implementation

V. Conclusion

Page 20 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

CONCLUSION

27 MAI 2014
Page 21 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

Perspectives

• Further experiments are required for the fault tolerance countermeasure

• Can we combine those countermeasures to secure an assembly code ?

• What about side-channel leakages on cryptographic implementations ?

 The effectiveness of both CM can be nullified if not well implemented

 On this platform, we need to check that the 32-bit encoding of instructions is used

 The fault tolerance CM can signifantly reinforce an isolated bl instruction

 However, it was not very effective on the FreeRTOS tested code

 The instruction skip fault model may be too simplistic

 The fault detection CM was very effective on all the tested codes
 But its applicability is limited since it cannot be applied to several instructions

THANK YOU FOR YOUR ATTENTION

Any questions ?

Page 22 of 22

TRUDEVICE Workshop 2014

May 29-30 - Paderborn, Germany

www.nicolasmoro.net

nicolas.moro [at] gmail.com

+33.(0)4.42.61.67.13

Nicolas MORO
PhD student, CEA

Graduation expected in Sep. 2014

To download the presentation (PDF file)

