DE LA RECHERCHE À L'INDUSTRIE

FAULT ATTACKS ON TWO SOFTWARE COUNTERMEASURES

Nicolas Moro^{1,3}, Karine Heydemann³, Amine Dehbaoui², Bruno Robisson¹, Emmanuelle Encrenaz³

Commissariat à l'Energie Atomique et aux Energies Alternatives

² ENSM.SE Ecole Nationale Supérieure des Mines de Saint-Etienne

³ LIP6 - UPMC

Laboratoire d'Informatique de Paris 6 Sorbonne Universités - Université Pierre et Marie Curie

Amine Dehbaoui is now with Serma Technologies

Experimental evaluation of two software countermeasures against fault attacks

N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, E. Encrenaz IEEE HOST Symposium 2014, Arlington, VA, USA

TRUDEVICE 2014 – MAY 29-30, PADERBORN, GERMANY

2 INTRODUCTION AND MOTIVATIONS

Concern: Security of embedded programs against fault attacks

- Many software countermeasures
- Defined by respect to a fault model
- Often based on redundancy principles

73	08000770	<fonctiontest>:</fonctiontest>		
74	8000770:	b570	push	{r4, r5, r6, lr}
75	8000772:	4604	mov	r4, r0
76	8000774:	460e	mov	r6, r1
77	8000776:	2201	movs	r2, #1
78	8000778:	0211	lsls	r1, r2, #8
79	800077a:	480a	ldr	r0, [pc, #40] ; (80007a4 <fonctiontest+0x34>)</fonctiontest+0x34>
80	800077c:	f7ff fdf5	bl	800036a <gpio writebit=""></gpio>
81	8000780:	2500	movs	r5, #0
82	8000782:	e005	b.n	8000790 <fonctiontest+0x20></fonctiontest+0x20>
83	8000784:	7820	ldrb	r0, [r4, #0]
	8000786:	5d71	ldrb	r1, [r6, r5]
85	8000788:	4408	add	r0, r1
86	800078a:	D240	SXTD	r0, r0
87	800078c:	7020	strb	r0, [r4, #0]
88	800078e	1c6d	ahha	r5 r5 #1

Some recent schemes propose to add this redundancy at assembly level

Can we evaluate the practical effectiveness of some assembly-level countermeasures against fault attacks ?

1 – Provide an experimental evaluation on single isolated instructions

2 – Provide an experimental evaluation on complex codes

Page 2 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

I. Experimental setup

- **II.** Preliminaries about the fault model
- **III. Evaluation on simple codes**
- **IV. Evaluation on a FreeRTOS implementation**
- V. Conclusion

Page 3 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

EXPERIMENTAL SETUP

Pulsed electromagnetic fault injection

- •Transient and local effect of the fault injection
- Standard circuits not protected against this technique
- Solenoid used as an injection antenna
- Up to 210V sent on the injection antenna, pulses width longer than 10ns

Microcontroller based on an ARM Cortex-M3

- 130nm CMOS technology, ARMv7-M architecture
- Frequency 56 MHz, clock period 17.8 ns
- 16/32 bits Thumb-2 RISC instruction set
- Keil ULINKpro JTAG probe to debug the microcontroller
- 3-stage pipeline (Fetch Decode Execute), no prefetch

The Definitive Guide to the ARM Cortex-M3 – Joseph Yiu, Newnes, 2009

Page 4 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

COO EXPERIMENTAL SETUP

Hardware exceptions

UsageFault exceptions for illegal instructions are triggered

→ Used to **identify the impacted instruction** for a given injection time

Page 5 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

- I. Experimental setup
- II. Preliminaries about the fault model
 - **III.** Evaluation on simple assembly codes
 - **IV. Evaluation on a FreeRTOS implementation**
 - V. Conclusion

Page 6 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

Cerror FAULT INJECTION ON A SINGLE 16-BIT LDR INSTRUCTION

Page 7 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

Cea FAULT INJECTION ON A SINGLE 16-BIT LDR INSTRUCTION

ldr r0, [pc, #40] → loads a 32-bit word into a register from the Flash memory

Consequences regarding the instruction flow (instruction fetch)

- Instructions replacements
- Instruction skips under certain conditions (~ 20-30% of time)

Consequences regarding the data flow (instruction decode)

Corruption of the ldr instructions from the Flash memory

Electromagnetic Fault Injection: Towards a Fault Model on a 32-bit Microcontroller N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, E.Encrenaz - FDTC Workshop, Santa-Barbara, 2013

Page 8 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

- I. Experimental setup
- II. Preliminaries about the fault model
- III. Evaluation on simple assembly codes
 - **IV. Evaluation on a FreeRTOS implementation**
 - V. Conclusion

Page 9 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

Cea general methodology

- Two fault injection attemps, every 200 ps
- During a time inteval defined by hardware instructions

From a security point of view, **effectiveness = reduction of faulty outputs**

Page 10 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

Cera Fault Tolerance Countermeasure

<function> bl Fault tolerance against one instruction skip Formally verified using model-checking tools A replacement sequence for every instruction r1, <return_label> adr No protection for the data flow r1, <return_label> adr add lr, r1, #1 Experiment performed on the bl instruction lr, r1, #1 add <function> b <function> h In the tested code, the subroutine modifies r0 return label

Formal verification of a software countermeasure against instruction skip fault attacks N. Moro, K. Heydemann, E.Encrenaz, B. Robisson - Journal of Cryptographic Engineering, Springer, 2014

Page 11 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

Cea FAULT INJECTION RESULTS

> Fewer faults by forcing the 32-bit encoding of instructions (orange curve)

- The countermeasure is not effective with 16-bit instructions (blue curve)
- The combination 32-bit inst + countermeasure is very effective (green curve)

Page 12 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

Cera FAULT DETECTION COUNTERMEASURE

- Detects any single fault (instruction skips, replacements, data flow)
- Proposed for a restricted set of instructions (ALU, load-store)
- Tested for a ldr instruction from the Flash memory

Countermeasures against fault attacks on software implemented AES

A. Barenghi, L. Breveglieri, I.Koren, G. Pelosi, F. Regazzoni – WESS Workshop, New-York, 2010

Page 13 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

CO2 FAULT DETECTION COUNTERMEASURE

> Faults for 16-bit and 32-bit encodings, some due to the corruption of the data transfer

- The FD countermeasure is not effective with a 16-bit encoding (blue curve)
- However, countermeasure + 32-bit encoding -> very effective (green curve)

Page 14 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

- I. Experimental setup
- **II.** Preliminaries about the fault model
- **III. Evaluation on simple assembly codes**
- IV. Evaluation on a FreeRTOS implementation
 - V. Conclusion

Page 15 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

Cea Freertos and target codes

Portable RTOS written in C, multitasking operating system

Fault tolerance countermeasure

- At the OS initialization
- The systems starts in privileged mode
- Then it switches to unprivileged mode

msr	control, r3 \rightarrow Changes priv. mode
msr	psp, r0
mov	rO, # <mark>0</mark>
add	lr, r1, #1
msr	basepri, r0
ldr	lr, =0xffffffd

prvRestoreContextOfFirstTask function

- →An attacker may try to stay in privileged mode
- To evaluate the effectiveness,

we observe the number of faults in the control register

Page 16 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

CO2 FAULT TOLERANCE COUNTERMEASURE

> Not very good effectiveness for the fault tolerance countermeasure on this code

- > The protected msr instruction is maybe too specific or the fault model too simplistic
- Further experiments are required to deeply analyze the effectiveness of this CM

Page 17 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

CO2 FREERTOS AND TARGET CODES

Fault detection countermeasure

- During task creation
- Each task has its own priority level
- The priority level is loaded from the Flash

ldr	r0, [r0, #0] \rightarrow uxPriority in r0			
str	r0, [sp, # <mark>0</mark>]			
movs	r3, #0 Arauments			
movs	r2, #128 for the			
movs	r1, #0			
ldr	r0, =address_fct			
bl	<xtaskgenericcreate></xtaskgenericcreate>			

Code before calling xTaskGenericCreate

- →An attacker may try to change a priority level
- To evaluate the effectiveness,
- we observe the number of faults in this priority level
- (in the xTaskGenericCreate function)

Page 18 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

Cerror Fault Detection Countermeasure

- > The countermeasure when only applied to ldr instructions still misses some faults
- The countermeasure is very effective on this code when applied to every instruction
- > However, not all the instructions can be protected with this countermeasure
- This countermeasure must be combined with other techniques against faults

Page 19 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

- I. Experimental setup
- **II.** Preliminaries about the fault model
- **III.** Evaluation on simple assembly codes
- **IV. Evaluation on a FreeRTOS implementation**

➡ V. Conclusion

Page 20 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

- The effectiveness of both CM can be nullified if not well implemented On this platform, we need to check that the 32-bit encoding of instructions is used
- > The fault tolerance CM can signifantly reinforce an isolated bl instruction
- However, it was not very effective on the FreeRTOS tested code The instruction skip fault model may be too simplistic
- The fault detection CM was very effective on all the tested codes But its applicability is limited since it cannot be applied to several instructions

Perspectives

- Further experiments are required for the fault tolerance countermeasure
- Can we combine those countermeasures to secure an assembly code ?
- What about side-channel leakages on cryptographic implementations ?

Page 21 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

Cer Thank You For Your Attention

Any questions ?

To download the presentation (PDF file)

Nicolas MORO

PhD student, CEA

Graduation expected in Sep. 2014

- 0
- www.nicolasmoro.net
- nicolas.moro [at] gmail.com
- +33.(0)4.42.61.67.13

Page 22 of 22 TRUDEVICE Workshop 2014 May 29-30 - Paderborn, Germany

