
FORMAL VERIFICATION OF A

SOFTWARE

COUNTERMEASURE

AGAINST INSTRUCTION SKIP

ATTACKS

| PAGE 1

Karine Heydemann1, Nicolas Moro1,2,

Emmanuelle Encrenaz1, Bruno Robisson2

PROOFS 2013 – AUGUST 24, SANTA BARBARA, USA

1 LIP6 - UPMC
Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie

2 CEA
Commissariat à l’Energie Atomique et aux Energies Alternatives

CONTEXT AND MOTIVATIONS

9 OCTOBRE 2013 | PAGE 2

 Target: Fault attacks on embedded programs

 Fault model:

assembly instruction skip

 A large set of harmful attacks may be possible with such a fault model

PROOFS 2013 – Santa Barbara, USA

 How can we ensure a correct execution of the

 embedded program with a possible instruction skip fault?

1 – Provide a fault-tolerant replacement sequence for each instruction

2 – Provide a formal proof for this fault tolerance

OUTLINE

| PAGE 3

I. Considered fault model

II. Countermeasure scheme

III. Formal proof of fault tolerance

IV. Application to an AES implementation

V. Conclusion

PROOFS 2013 – Santa Barbara, USA

FAULT INJECTION ATTACKS

OCTOBER 9, 2013 | PAGE 4

K M
C

0110010101100001

010110000110011

110101000101101

Faulty ciphertext

Perturbation

Comparison

 Modify the circuit’s environment to change its computation

 Many physical ways to inject such faults into a circuit

 Every fault injection means has a specific fault model

PROOFS 2013 – Santa Barbara, USA I – Considered fault model

INSTRUCTION SKIP FAULT MODEL

OCTOBER 9, 2013 | PAGE 5

 We assume an attacker can skip an assembly instruction

 Observed for different architectures and injection means

 In our own experiments, instruction skips are

specific cases of instruction replacements (FDTC 2013)

PROOFS 2013 – Santa Barbara, USA

Fault injection means Reference

Clock glitches Balasch et al. (FDTC 2011)

Voltage underfeeding Barenghi et al. (J. Syst. Soft. 2013)

Electromagnetic pulses Dehbaoui et al. (FDTC 2012)

Laser Trichina et al. (FDTC 2010)

I – Considered fault model

HOW TO DEAL WITH DOUBLE FAULTS ?

OCTOBER 9, 2013 | PAGE 6 I – Considered fault model

 Double faults are practical under some specific constraints

 (a few tens of clock cycles, at a few KHz frequency)

 We assume performing a double fault on two consecutive

clock cycles is significantly harder to do in practice

 Usual redundancy countermeasures need to be adapted

PROOFS 2013 – Santa Barbara, USA

Function f Function f Comparison

t

OUTLINE

| PAGE 7

I. Considered fault model

II. Countermeasure scheme

III. Formal proof of fault tolerance

IV. Application to an AES implementation

V. Conclusion

PROOFS 2013 – Santa Barbara, USA

COUNTERMEASURE SCHEME : APPROACH

OCTOBER 9, 2013 | PAGE 8 II– Countermeasure scheme

 Propose a fault-tolerant replacement scheme for each assembly

instruction of the whole instruction set

 Each encoding has its own fault-tolerant replacement sequence

PROOFS 2013 – Santa Barbara, USA

ARM Thumb2 instruction set

-16/32 bit RISC instruction set

- 151 instructions

- Each instruction has up to 4 encodings

 (depends on the operands, the registers used, conditional execution, …)

THREE CLASSES OF INSTRUCTIONS

OCTOBER 9, 2013 | PAGE 9 II– Countermeasure scheme PROOFS 2013 – Santa Barbara, USA

Standard code

ADD R1, R1, #1

CMP R1, #9

B <label>

Code with replacement sequences

ADD R12, R1, #1

ADD R12, R1, #1

MOV R1, R12

MOV R1, R12

CMP R1, #9

CMP R1, #9

B <label>

B <label>

Class Examples

Idempotent instructions mov r1,r8

add r3,r1,r2

Separable instructions add r1,r1,#1

push {r4,r5,r6}

Specific instructions bl <function>

IT blocks

IDEMPOTENT INSTRUCTIONS

OCTOBER 9, 2013 | PAGE 10 II– Countermeasure scheme PROOFS 2013 – Santa Barbara, USA

 Instructions that have the same effect if executed once or twice

 Simple instruction duplication

Instruction Replacement sequence

mov r1,r8

(copies r8 into r1)

mov r1,r8

mov r1,r8

ldr r1, [r8, r2]

(loads the value at the address r8+r2 into r1)

ldr r1, [r8, r2]

ldr r1, [r8, r2]

str r3, [r2, #10]

(stores r3 at the address r2+10)

str r3, [r2, #10]

str r3, [r2, #10]

add r3,r1,r2

(puts r1+r2 into r3)

add r3,r1,r2

add r3,r1,r2

 Doubles the code size, doubles the execution time

SEPARABLE INSTRUCTIONS

OCTOBER 9, 2013 | PAGE 11 II– Countermeasure scheme PROOFS 2013 – Santa Barbara, USA

 Not idempotent, with a source register also destination

… but can be replaced by a sequence of idempotent instructions

 Variable overhead cost in code size and performance

 Need for an available free register

ADD R1, R1, #1

ADD r12, r1, #1

ADD r12, r1, #1

MOV r1, r12

MOV r1, r12

PUSH {r1, r2, r3, lr}
(equivalent to STMDB sp!, {r1,r2,r3,lr})

STMDB sp, {r1, r2, r3, lr}

STMDB sp, {r1, r2, r3, lr}

SUB r12, sp, #16

SUB r12, sp, #16

MOV sp, r12

MOV sp, r12

SPECIFIC INSTRUCTIONS

OCTOBER 9, 2013 | PAGE 12 II– Countermeasure scheme PROOFS 2013 – Santa Barbara, USA

 Some instructions cannot be easily replaced by such a sequence

 Branch instructions can be duplicated, but not subroutine calls
 (otherwise those subroutines would be executed twice)

bl <function>

ADR r12, <return_label>

ADR r12, <return_label>

ADD lr, r12, 1

ADD lr, r12, 1

B <function>

B <function>

return_label:

 …

Puts the return address into r12

Updates the return pointer (LR)

Branches to the subroutine code

OTHER VERY SPECIFIC SITUATIONS

OCTOBER 9, 2013 | PAGE 13 II– Countermeasure scheme PROOFS 2013 – Santa Barbara, USA

Instructions that read and write the flags

 A replacement sequence can be found

 if the flags are not alive

 Otherwise:

• forbid the use of those instructions

• use a fault detection sequence

IT blocks for conditional execution

 Convert IT blocks into branch-based if/then/else structures

 Then apply the individual countermeasure scheme

 A more tricky replacement is possible by keeping the IT structure

 but it can quickly become very costly

mrs r12 , APSR

mrs r12 , APSR

adcs r1 , r2 , r3

msr APSR, r12

msr APSR, r12

adcs r1 , r2 , r3

OVERVIEW OF THE COUNTERMEASURE

OCTOBER 9, 2013 | PAGE 14 II– Countermeasure scheme PROOFS 2013 – Santa Barbara, USA

 A fault-tolerant replacement sequence for all the instructions
(except for the ones that read and write the flags)

 Can be directly applied as a transformation to an assembly code

 Can we prove the replacement sequences are fault-tolerant ?

Can we prove they are equivalent to the initial instructions ?

We use a model-checking approach for such a proof

OUTLINE

| PAGE 15

I. Considered fault model

II. Countermeasure scheme

III. Formal proof of fault tolerance

IV. Application to an AES implementation

V. Conclusion

PROOFS 2013 – Santa Barbara, USA

MODEL-CHECKING APPROACH

OCTOBER 9, 2013 | PAGE 16 III – Formal proof of fault tolerance PROOFS 2013 – Santa Barbara, USA

 Model-checking aims at ensuring an implementation satisfies a

specification

 Specifications can be expressed with temporal logic formulas

Model-checker

(Vis)

Specification

(CTL)
Implementation

(Verilog)

PASSED FAILED

MODEL-CHECKING APPROACH

OCTOBER 9, 2013 | PAGE 17 III – Formal proof of fault tolerance PROOFS 2013 – Santa Barbara, USA

 Model-checking approach at an instruction scale

 Specific construction of a state machine with an instruction and its

replacement sequence

 We need to prove that the output state of a replacement sequence is

equivalent to the output state of the initial instruction

Instruction
Replacement

sequence

Same input state
(memory, registers, flags)

Possible

fault

injection

Same output state ?

MODEL-CHECKING APPROACH

OCTOBER 9, 2013 | PAGE 18 III – Formal proof of fault tolerance PROOFS 2013 – Santa Barbara, USA

 Each instruction is a function that maps a registers and memory

configuration to a new registers and memory configuration

 A sequence of instructions is modeled as a transition system

 States are registers and memory configurations

 Transitions mimic the state transformations applied by the

instructions

 Each instructions has specific properties that need to be proved

PROOF SYSTEM FOR THE BL INSTRUCTION

OCTOBER 9, 2013 | PAGE 19 III – Formal proof of fault tolerance PROOFS 2013 – Santa Barbara, USA

P1 : AF(BL.PC = PC1

+ CM(BL).PC = PC1)

Any path finally goes to a final state

P2 : AG(((BL.PC = PC1) *(CM(BL).PC = PC1))

=> ((BL.cpt = 1) * CM(BL).cpt = BL.cpt)))

In a final state the number of calls to the

function is equal to one

ADCS INSTRUCTION

OCTOBER 9, 2013 | PAGE 20 III – Formal proof of fault tolerance PROOFS 2013 – Santa Barbara, USA

MC: formula passed --- AG(AF(adcs.pc=PC1))

MC: formula passed --- AG(AF(cm(adcs).pc=PC1))

MC: formula passed --- AG(((adcs.pc=PC1 * cm(adcs).pc=PC1) -> LIGHT_RESULT=1))

MC: formula failed --- AG(((adcs.pc=PC1 * cm(adcs).pc=PC1) -> RESULT=1))

mrs r12 , APSR

mrs r12 , APSR

adcs r1 , r2 , r3

msr APSR, r12

msr APSR, r12

adcs r1 , r2 , r3

Saves the flags

Restores the flags

 Flags are not equal if a fault targets the last ADCS instruction

 LIGHT_RESULT releases this constraint

OUTLINE

| PAGE 21

I. Considered fault model

II. Countermeasure scheme

III. Formal proof of fault tolerance

IV. Application to an AES implementation

V. Conclusion

PROOFS 2013 – Santa Barbara, USA

APPLICATION TO AN AES IMPLEMENTATION

OCTOBER 9, 2013 | PAGE 22 IV – Application to an AES implementation PROOFS 2013 – Santa Barbara, USA

 Round keys calculated before each AddRoundKey operation

 Possible optimization: last two rounds with countermeasure

Implementation Clock cycles Code size

AES - without countermeasure 9595 490 bytes

AES - whole code with CM 20503 (+113.7%) 1480 bytes (+202%)

AES – last two rounds with CM 11374 (+18.6 %) 1874 bytes (+282.5%)

High overhead cost,

but comparable to the cost brought by usual redundancy approaches

Enables a fault tolerance at a cheaper cost compared to triplication

OUTLINE

| PAGE 23

I. Considered fault model

II. Countermeasure scheme

III. Formal proof of fault tolerance

IV. Application to an AES implementation

V. Conclusion

PROOFS 2013 – Santa Barbara, USA

CONCLUSION AND PERSPECTIVES

OCTOBER 9, 2013 | PAGE 24 Conclusion

 Fault-tolerant countermeasure scheme

 Tolerant to multiple fault that do not target two consecutive instructions

 Proof of fault tolerance and equivalence to the initial instructions

 Adds a reasonably good security level, without any hardware

countermeasure

 Cost comparable to usual algorithm-level redundancy schemes

PROOFS 2013 – Santa Barbara, USA

Perspectives

- Extend the fault model to include faults on the data loads

- Make a practical evaluation of such a countermeasure scheme

THANK YOU FOR YOUR ATTENTION

OCTOBER 9, 2013 | PAGE 25

Any questions ?

PROOFS 2013 – Santa Barbara, USA Conclusion

