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CONTEXT AND MOTIVATIONS 
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 Target: Fault attacks on embedded programs 

 

 Fault model: 

assembly instruction skip 

 

 A large set of harmful attacks may be possible with such a fault model 
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  How can we ensure a correct execution of the 

 embedded program with a possible instruction skip fault? 

1 – Provide a fault-tolerant replacement sequence for each instruction 

 

2 – Provide a formal proof for this fault tolerance  
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FAULT INJECTION ATTACKS 
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K M 
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Faulty ciphertext 

Perturbation 

Comparison 

 Modify the circuit’s environment to change its computation 

 

 Many physical ways to inject such faults into a circuit 

 

 Every fault injection means has a specific fault model   
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INSTRUCTION SKIP FAULT MODEL 
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 We assume an attacker can skip an assembly instruction 

 

 Observed for different architectures and injection means 

 

 

 

 

 

 

 

 In our own experiments, instruction skips are  

specific cases of instruction replacements (FDTC 2013) 
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Fault injection means Reference 

Clock glitches Balasch et al. (FDTC 2011) 

Voltage underfeeding Barenghi et al. (J. Syst. Soft. 2013) 

Electromagnetic pulses Dehbaoui et al. (FDTC 2012) 

Laser Trichina et al. (FDTC 2010) 

I – Considered fault model 



HOW TO DEAL WITH DOUBLE FAULTS ?  
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 Double faults are practical under some specific constraints 

  (a few tens of clock cycles, at a few KHz frequency) 

 

 

 

 

 

 

 We assume performing a double fault on two consecutive 

clock cycles is significantly harder to do in practice 

 

 Usual redundancy countermeasures need to be adapted 
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COUNTERMEASURE SCHEME : APPROACH 
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 Propose a fault-tolerant replacement scheme for each assembly 

instruction of the whole instruction set 

 

 Each encoding has its own fault-tolerant replacement sequence 
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ARM Thumb2 instruction set 
 

-16/32 bit RISC instruction set 

- 151 instructions 

- Each instruction has up to 4 encodings 

  (depends on the operands, the registers used, conditional execution, …) 



THREE CLASSES OF INSTRUCTIONS 
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Standard code 

 
ADD  R1, R1, #1 

CMP R1, #9 

B <label> 

 

 

 

 

 

Code with replacement sequences 

 
ADD  R12, R1, #1 

ADD  R12, R1, #1 

MOV R1, R12 

MOV R1, R12  

CMP R1, #9 

CMP R1, #9 

B <label> 

B <label> 

Class Examples 

Idempotent instructions mov r1,r8 

add r3,r1,r2 

Separable instructions add r1,r1,#1 

push {r4,r5,r6} 

Specific instructions bl <function> 

IT blocks 



IDEMPOTENT INSTRUCTIONS 
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 Instructions that have the same effect if executed once or twice 

 Simple instruction duplication 

 

 

 

Instruction Replacement sequence 

mov r1,r8 

(copies r8 into r1)  

mov r1,r8 

mov r1,r8 

ldr r1, [r8, r2] 

(loads the value at the address r8+r2 into r1) 

ldr r1, [r8, r2] 

ldr r1, [r8, r2] 

str r3, [r2, #10] 

(stores r3 at the address r2+10) 

str r3, [r2, #10] 

str r3, [r2, #10] 

add r3,r1,r2 

(puts r1+r2 into r3)  

add r3,r1,r2 

add r3,r1,r2 

 Doubles the code size, doubles the execution time 

 

 



SEPARABLE INSTRUCTIONS 
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 Not idempotent, with a source register also destination 

… but can be replaced by a sequence of idempotent instructions 

 

 

 

 Variable overhead cost in code size and performance  

 Need for an available free register 

ADD R1, R1, #1 

 

 
ADD  r12, r1, #1 

ADD  r12, r1, #1 

MOV r1, r12 

MOV r1, r12  

 

 

PUSH {r1, r2, r3, lr}  
(equivalent to STMDB sp!, {r1,r2,r3,lr} )  

 
STMDB sp, {r1, r2, r3, lr} 

STMDB sp, {r1, r2, r3, lr} 

SUB r12, sp, #16 

SUB r12, sp, #16 

MOV sp, r12 

MOV sp, r12 



SPECIFIC INSTRUCTIONS 
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 Some instructions cannot be easily replaced by such a sequence 

 

 Branch instructions can be duplicated, but not subroutine calls 
    (otherwise those subroutines would be executed twice) 

 

 

 

bl <function> 

 
ADR r12, <return_label> 

ADR r12, <return_label> 

ADD lr, r12, 1 

ADD lr, r12, 1 

B <function> 

B <function> 

 

return_label: 

 … 

Puts the return address into r12 

Updates the return pointer (LR) 

Branches to the subroutine code  



OTHER VERY SPECIFIC SITUATIONS 
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Instructions that read and write the flags 

 A replacement sequence can be found  

  if the flags are not alive 

 Otherwise: 

• forbid the use of those instructions 

• use a fault detection sequence 

IT blocks for conditional execution 

 Convert IT blocks into branch-based if/then/else structures 

 Then apply the individual countermeasure scheme 

 A more tricky replacement is possible by keeping the IT structure  

  but it can quickly become very costly 

mrs  r12 , APSR 

mrs  r12 , APSR 

adcs  r1 , r2 , r3 

msr  APSR, r12 

msr  APSR, r12 

adcs  r1 , r2 , r3 



OVERVIEW OF THE COUNTERMEASURE 
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 A fault-tolerant replacement sequence for all the instructions 
(except for the ones that read and write the flags) 

 

 Can be directly applied as a transformation to an assembly code 

 

 Can we prove the replacement sequences are fault-tolerant ? 

 

Can we prove they are equivalent to the initial instructions ? 

We use a model-checking approach for such a proof 
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MODEL-CHECKING APPROACH 
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 Model-checking aims at ensuring an implementation satisfies a 

specification 

 

 Specifications can be expressed with temporal logic formulas 

 

Model-checker 

(Vis) 

Specification 

(CTL) 
Implementation 

(Verilog) 

PASSED FAILED 



MODEL-CHECKING APPROACH 
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 Model-checking approach at an instruction scale 

 

 Specific construction of a state machine with an instruction and its 

replacement sequence 

 

 We need to prove that the output state of a replacement sequence is 

equivalent to the output state of the initial instruction 

 

 

Instruction 
Replacement 

sequence 

Same input state 
(memory, registers, flags) 

Possible 

fault 

injection 

Same output state ? 



MODEL-CHECKING APPROACH 
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 Each instruction is a function that maps a registers and memory 

configuration to a new registers and memory configuration 

 

 A sequence of instructions is modeled as a transition system 

 

 States are registers and memory configurations 

 

 Transitions mimic the state transformations applied by the 

instructions 

 

 Each instructions has specific properties that need to be proved 

 

 



PROOF SYSTEM FOR THE BL INSTRUCTION 
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P1 : AF(BL.PC = PC1  

+ CM(BL).PC = PC1) 

Any path finally goes to a final state 

 

 

P2  : AG( ((BL.PC = PC1) *(CM(BL).PC = PC1)) 

=> ((BL.cpt = 1) * CM(BL).cpt = BL.cpt))) 

In a final state the number of calls to the 

function is equal to one 

 



ADCS INSTRUCTION 
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# MC: formula passed --- AG(AF(adcs.pc=PC1)) 

# MC: formula passed --- AG(AF(cm(adcs).pc=PC1)) 

# MC: formula passed --- AG(((adcs.pc=PC1 * cm(adcs).pc=PC1) -> LIGHT_RESULT=1)) 

# MC: formula failed --- AG(((adcs.pc=PC1 * cm(adcs).pc=PC1) -> RESULT=1)) 

mrs  r12 , APSR 

mrs  r12 , APSR 

adcs  r1 , r2 , r3 

msr  APSR, r12 

msr  APSR, r12 

adcs  r1 , r2 , r3 

Saves the flags 

Restores the flags 

 Flags are not equal if a fault targets the last ADCS instruction 

 
 LIGHT_RESULT releases this constraint 
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APPLICATION TO AN AES IMPLEMENTATION 
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 Round keys calculated before each AddRoundKey operation 

 Possible optimization: last two rounds with countermeasure 

Implementation Clock cycles Code size 

AES - without countermeasure 9595 490 bytes 

AES - whole code with CM 20503 (+113.7%) 1480 bytes (+202%) 

AES – last two rounds with CM 11374 (+18.6 %) 1874 bytes (+282.5%) 

High overhead cost,  

but comparable to the cost brought by usual redundancy approaches 

Enables a fault tolerance at a cheaper cost compared to triplication 
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CONCLUSION AND PERSPECTIVES 
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 Fault-tolerant countermeasure scheme 

 

 Tolerant to multiple fault that do not target two consecutive instructions 

 

 Proof of fault tolerance and equivalence to the initial instructions 

 

 Adds a reasonably good security level, without any hardware 

countermeasure  

 

 Cost comparable to usual algorithm-level redundancy schemes 

PROOFS 2013 – Santa Barbara, USA 

Perspectives 
 

- Extend the fault model to include faults on the data loads 

- Make a practical evaluation of such a countermeasure scheme  
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Any questions ? 
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