DE LA RECHERCHE À L'INDUSTRIE

ELECTROMAGNETIC FAULT INJECTION ON MICROCONTROLLERS

Nicolas Moro^{1,3}, Amine Dehbaoui², Karine Heydemann³, Bruno Robisson¹, Emmanuelle Encrenaz³

Commissariat à l'Energie Atomique et aux Energies Alternatives

² ENSM.SE

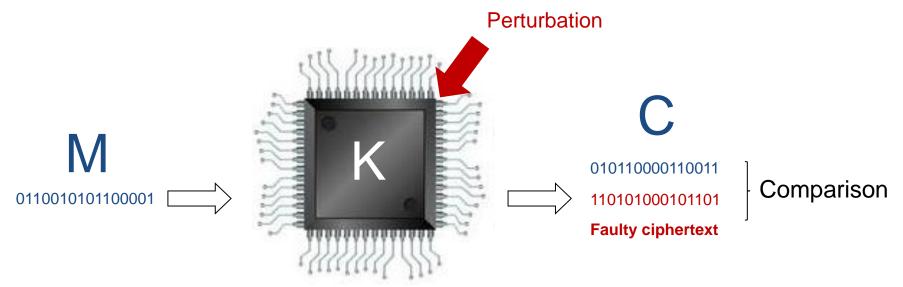
Ecole Nationale Supérieure des Mines de Saint-Etienne

³ LIP6 - UPMC

Laboratoire d'Informatique de Paris 6 Université Pierre et Marie Curie

Chip-to-Cloud Security Forum Smart Trusted Technologies & Services for the Networked Society September 25-27, 2013 – Nice, French Riviera

- Security of microcontroller-based embedded systems against fault injection attacks
- Target: ARM Cortex-M3 microcontroller
- Fault injection means: Pulsed electromagnetic fault injection
- Theoretical attacks rely on an attacker's fault model
- Electromagnetic fault injection is quite recent
- Very few in-depths studies of the effects on complex systems
- → Better understanding of the effects of EM fault injection
- → Detailed fault model at a register-transfer level



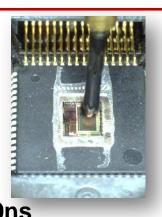
- II. General approach
- **III. Study of the injection parameters**
- IV. Register-transfer level fault model
- V. Conclusion

Cea FAULT INJECTION ATTACKS

- Several physical ways to inject faults into a circuit's computation
- Necessary for an attacker to know the type of injected faults

Fault target	Data, instructions
Fault type	Bit flip, reset at 0, set at 1, stuck
Granularity	Bit, byte, word
Determinism	Deterministic, metastable, random
Temporal aspect	Single piece of data/instruction, multiple

I - Experimental setup


2 EXPERIMENTAL SETUP

- •Transient and local effect of the fault injection
- Standard circuits not protected against this technique
- Solenoid used as an injection antenna
- Up to 200V sent on the injection antenna, pulses width longer than 10ns

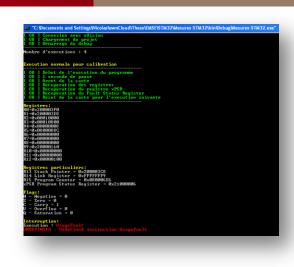
Microcontroller based on an ARM Cortex-M3

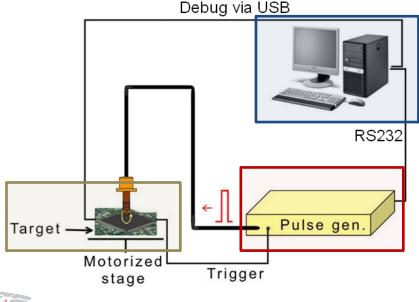
- Frequency 56 MHz
- -16/32 bits Thumb2 RISC instruction set
- ARMv7-M modified Harvard architecture
- SWD link to debug the microcontroller

Ecole Nationale Supérieure des Mines

DE LA RECHERCHE À L'INDUSTRI

DETAILED EXPERIMENTAL PROTOCOL


Ecole Nationale Supérieure des Mines

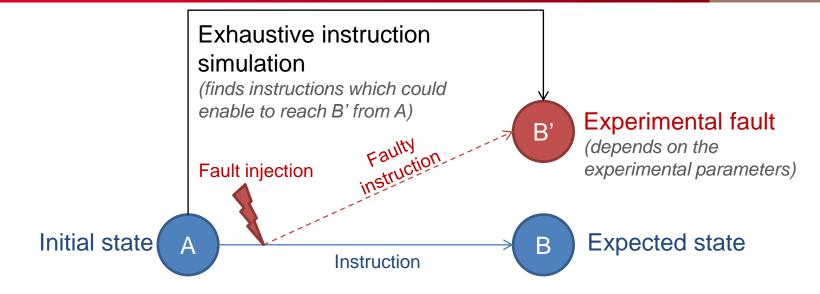


- Execution of a computation on the target device
- Sending of a voltage pulse
- Stop of the microcontroller
- Harvesting of the microcontroller's internal data
- Analysis of the obtained results

Main experimental parameters

- Position of the injection antenna
- Electric parameters of the pulse
- Injection time of the pulse
- Executed code on the microcontroller

- I. Experimental setup
- 🗭 II. General approach
 - **III. Study of the injection parameters**
 - IV. Register-transfer level fault model
 - V. Conclusion



DE LA RECHERCHE À L'INDUSTRI

GENERAL APPROACH

Output pieces of data	Detail
R0 to R12	General-purpose registers
R13 (SP)	Stack pointer
R14 (LR)	Link register
R15 (PC)	Program counter
XPSR	Program Status Register - Flags - Details about the triggered interruptions - Details about the execution mode
Result	Memory address that contains the calculation's output

Ecole Nationale Supérieure des Mines SAINT-ETIENNE

Instruction replacement simulation

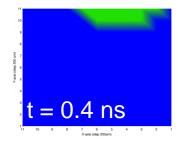
Execution 🔽 IT	Ligne_assembleur		1	Detail_IT	Adresse	R	0	R1	R2 🔽	R3 💌	R4 💌	R5 💌	R6 💌
0 TI	hread_mode			None	None	0)	x200004f0	0x2	0x20000421	0x3	0x2	0x40010c10	0x40010c14
0 TI	hread_mod 0x20000B0F 0000	MOVS	r0,r0	None	None	0)	x200004f0	0x1[FAUTE]	0x20000421	0x1[FAUTE]	0x1[FAUTE]	0x40010c10	0x40010c14
1 T	hread_mod 0x20000B0F 0001	MOVS	r1,r0	None	None	0)	x200004f0	0x200004f0	[F0x20000421	0x1[FAUTE]	0x1[FAUTE]	0x40010c10	0x40010c14
2 TI	hread_mod 0x20000B0F 0002	MOVS	r2,r0	None	None	0)	x200004f0	0x1[FAUTE]	0x200004f0[FOx1[FAUTE]	0x1[FAUTE]	0x40010c10	0x40010c14
3 TI	hread_mod 0x20000B0F 0003	MOVS	r3,r0	None	None	0)	x200004f0	0x1[FAUTE]	0x20000421	0x200004f0[F0x1[FAUTE]	0x40010c10	0x40010c14
4 TI	hread mod 0x20000B0F 0004	MOVS	r4,r0	None	None	0)	x200004f0	0x1[FAUTE]	0x20000421	0x1[FAUTE]	0x200004f0[F0x40010c10	0x40010c14
		1101/0		••	••	-	20000450	o distants	0.00000404	0 455 AUTO	0 455 AUTO	0.000004fot	

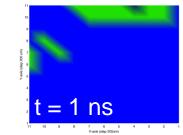
Experimental measurements

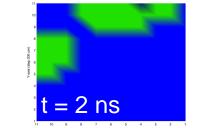
Instant	Exec 💌	π	🔽 Ligne_assembleur 💌	Detail_IT 💌	Adres	r R0 💌	R1 💌	R2 💌	R3 💌	R4 💌	R5 💌	R6 💌	R7
376	600 1	Thread_mode	None	None	None	0x2000040c	0x2	0x20000421	0x3	0x2	0x40010c10	0x40010c14	0x100
376	600 2	2 Thread_mode	None	None	None	0x2000040c	0x2	0x20000421	0x3	0x2	0x40010c10	0x40010c14	0x100
376	600 B	Thread_mode	None	None	None	0x2000040c	0x2	0x20000421	0x3	0x2	0x40010c10	0x40010c14	0x100
376	600 4	Thread_mode	None	None	None	0x2000040c	0x2	0x20000421	0x3	0x2	0x40010c10	0x40010c14	0x100
376	600 5	5 Thread_mode	None	None	None	0x2000040c	0x2	0x20000421	0x2[FAUTE]	0x1[FAUTE]	0x40010c10	0x40010c14	0x100

■ Two lines are equal ⇔ R0 to R12 + XPSR + result + SP + PC are equal

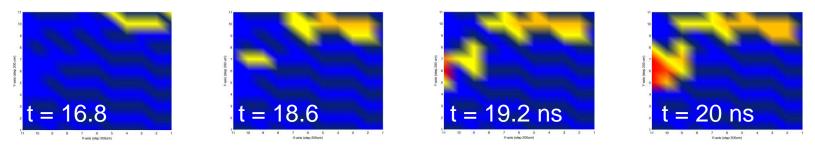
- I. Experimental setup
- II. General approach
- III. Study of the injection parameters
 - IV. Register-transfer level fault model
 - V. Conclusion

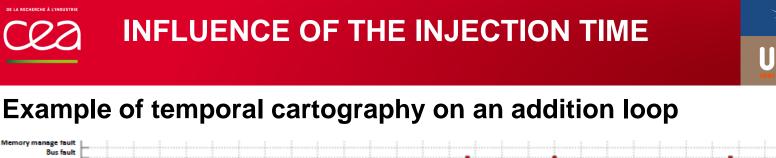



Cea INFLUENCE OF THE ANTENNA'S POSITION



- Green : hardware interrupts have been triggered
- Red : faults on the output value have been obtained





Frequency 56 MHz – Pulse width 10 ns – Pulse voltage 190V – Period 17ns

- Target instruction : single LOAD instruction that loads 0x12345678 into R8
- 20 ns time interval, by steps of 200 ps 3 mm square, by steps of 200 μm
- Variable increase of the Hamming weight of the loaded piece of data
- No fault on other registers than R8 (except for very few faults on R0)

Observations:

- One power of two has not been added
- BusFault or UsageFault interrupts

➔ Does our fault injection have an effect on the data flow or the control flow ?

Test program:

loop to sum the elements of an array that contains eight powers of two $3.5 \ \mu$ s, by steps of 200 ps

Ecole Nationale Supérieure des Mines

Expected result: 0xFF

addition_loop :		
ldr r4, [r2,r1, 1s1 #2]	;	r4 = array[i]
ldr r3, [r0,#0]	;	r3 = result
add r3, r4	;	r3 = r3 + r4
str r3, [r0,#0]	;	result = r3
add r1, r1, #1	;	r1 = r1 + 1
cmp r1, #8	;	r1 == 8 ?
blt addition_loop		

LDR R4, PC#44 with 0x12345678 at the address PC#44

Pulse voltage	Output value	Occurrence rate
172V	1234 5678	100 %
174V	9 234 5678	73 %
176V	FE34 5678	30 %
178V	FFF4 5678	53 %
180V	FFFD 5678	50 %
182V	FFFF 7F78	46 %
184V	FFFF FFFB	40 %
186V	FFFF FFFF	100 %

Simulation : corresponds to no instruction replacement

- Looks like a set at 1 fault model on the Flash memory data transfers
- Possible precharge of the data bus on this architecture

- I. Experimental setup
- II. General approach
- **III. Study of the injection parameters**
- IV. Register-transfer level fault model
 - V. Conclusion

Cera faults on the control flow

Ecole Nationale Supérieure des Mines SAINT-ETIENNE

- Experiments with a sequence of NOP (BF 00)
- Four kinds of faults
 - Fault on R7
 - The program does not stop
 - UsageFault exceptions (Invalid Instruction / No Coprocessor)
 - Fault on R0
- Sometimes a modification of the number of executed cycles
- Simulation on the ISA: some instructions can explain the results
- Some faults only equivalent to a STR R0, [R0, #0] instruction

NOP - BF001011111100000000NOP - BF001011111100000000

STR R0, [R0, #0] - 60000110000000000000NOP - BF001011111100000000

Direct coupling on the bus lines

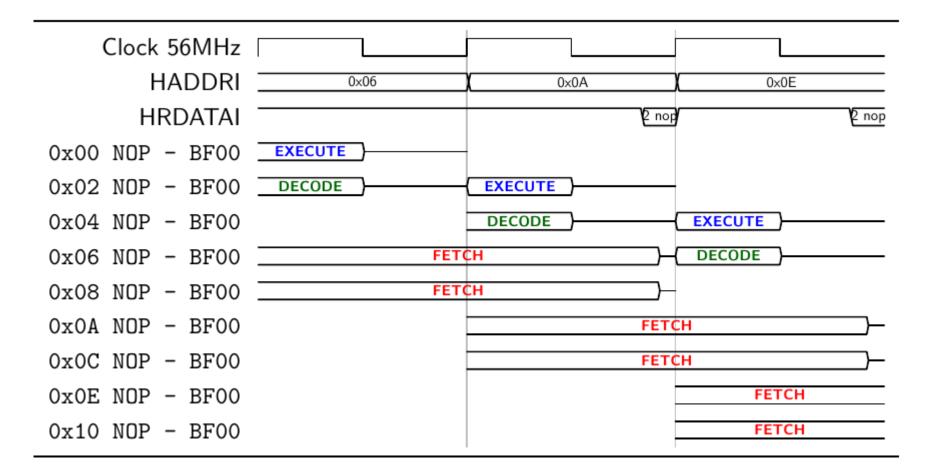
→ Unlikely: otherwise we could also inject faults on the address bus

Coupling on the power grid or the ground network

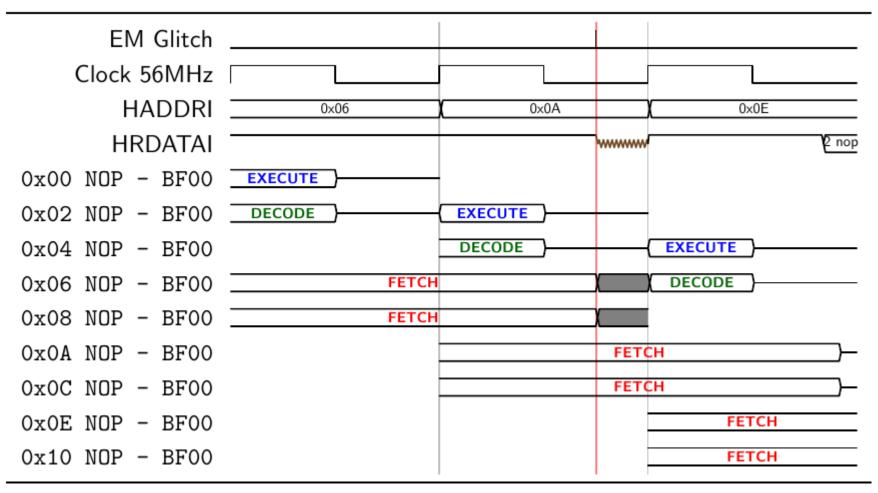
 \rightarrow Likely: could slow down the transfers on the bus

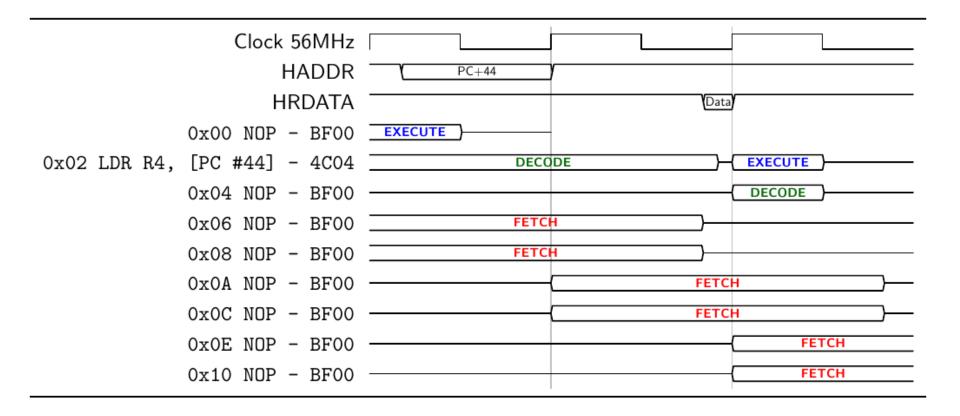
Coupling on the clock tree

→ **Possible**: could provoke a shorter clock cycle

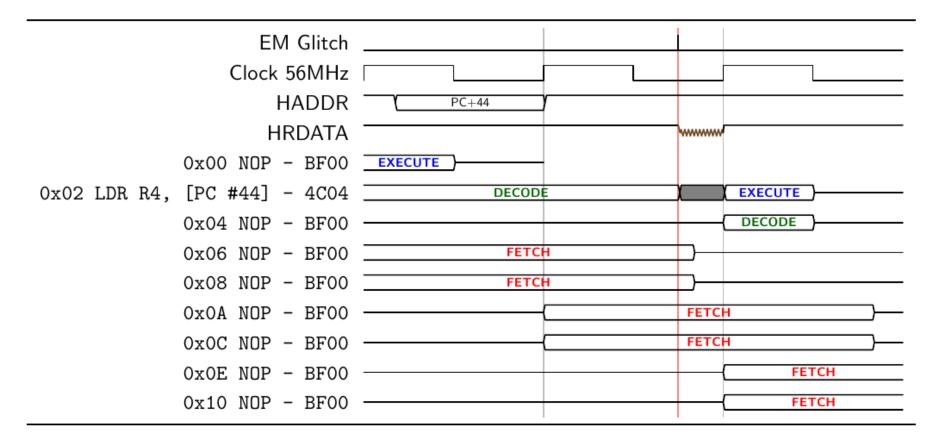

Investigation of timing constraints violation as a fault injection means

2012 - Loïc Zussa, Jean-Max Dutertre, Jessy Clédière, Bruno Robisson, Assia Tria 27th Conference on Design of Circuits and Integrated Systems (DCIS). Avignon

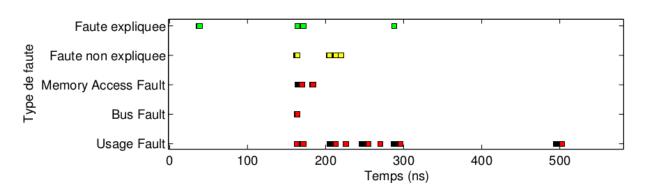

Normal behaviour



With an electromagnetic fault injection


Ecole Nationale Supérieure des Mines

Normal behaviour


With an electromagnetic fault injection

Ce2 INSTRUCTION SKIP EFFECTS

Many instruction replacements have an effect which is equivalent to instruction skips

In our experiments, up to **30%** of successful fault injection lead to an instruction skip effect

Balasch *et al.* (FDTC 2011) **50%** on another platform

Possible explanations

• ARM conditional execution ?

(unlikely on this architecture with the Thumb2 instruction set)

Replacement by a useless instruction ?

(writing on a dead register, on a useless memory address)

Re-execution of the previous instruction ?

(many instructions are idempotent)

➔ Possible to fault the transfers from the Flash memory

Consequences regarding the instruction flow

- Instructions replacements
- Instruction skips under certain conditions (~ 20-30% of time)
- Some instructions may be more sensitive than others
- Some registers seem to be more sensitive than others

Consequences regarding the data flow

- Corruption of the LOAD instructions from the Flash memory (encryption keys,...)
- Some metastability phenomena, but deterministic under some conditions
- Faulty values with higher Hamming weight (on this architecture)

- I. Experimental setup
- II. General approach
- **III. Study of the injection parameters**
- IV. Register-transfer level fault model

➡ V. Conclusion

- A first attempt of **fault model** for EM fault injection on a 32-bit μC
- Corruption of the **transfers from the Flash memory** on the buses
- The obtained effects seem very similar to the ones obtained with clock glitches or other fault injection means
- Similar effects obtained previously on a very different architecture (Atmel AVR ATmega128 8-bit microcontroller)
- Possibility to perform instruction skips under some specific conditions

Perspectives

- Use more advanced debug techniques to understand better instruction replacements
- Define a higher-level fault model that can be used for theoretical attacks

Ecole Nationale

Any questions ?

