DE LA RECHERCHE À L'INDUSTRIE

ROUND MODIFICATION ANALYSIS ON AES USING ELECTROMAGNETIC GLITCH

<u>Amine DEHBAOUI</u>¹, Amir-Pasha MIRBAHA², Nicolas MORO¹, Jean-Max DUTERTRE², Assia TRIA¹

COSADE 2013

Paris, France

www.cea.fr

OUTLINE

www.emse.

Context

- Round Modification Analysis on AES
- Proposed Round Modification Analysis on AES
- Electromagnetic Glitch Injection Technique
- Concrete Results with EMG
- Conclusion

Fault injection means : Power supply glitch, Clock glitch, EM glitch, Laser shot ...

disturb the encryption/decryption process through unusual environmental conditions in order to :

- reduce the encryption complexity (e.g. round reduction analysis),
- differential fault analysis = comparison between correct and faulty ciphertexts.
- safe errors, HW/SW reverse engineering , ...
- \square retrieve information on the encryption process (i.e. information leakage) | PAGE 3

Round Modification Analysis on

AES

ADVANCED ENCRYPTION STANDARD 128 BITS REMINDER

STATE-OF-THE-ART OF ROUND MODIFICATIONS ANALYSIS

Round **M**odification Analysis

□ Round Reduction Analysis decrease the number of executed rounds

Round Addition Analysis increase the number of executed rounds

Round Alteration Analysis modification of the round order

PAGE 6

STATE-OF-THE-ART OF ROUND MODIFICATIONS ANALYSIS

C 2 2

Round **M**odification Analysis

Round Reduction Analysis

H. Choukri et al. [2005]

J.H. Park et al. [2011]

K.S. Bae et al.[2011]

Round Addition Analysis

J.M. Dutertre et al. #3 [2012]

J.M. Dutertre et al. #2 [2012]

STATE-OF-THE-ART OF ROUND MODIFICATIONS ANALYSIS

Cea

Attack	Target	Mean	Туре	Encryption sequence	Req. texts	Key search average time
H. Choukri et al. [FDTC'05]	PIC16F877 8-bit	Power Glitch	Round Reduction	$R_0 - R_m$	2	≈ 1 second
J.H. Park et al. [ETRI'11]	ATmega128 8-bit	Laser	Round Reduction	$R_0 - R_1 - R_{10}$	10	≈ 10 hours
K.S. Bae et al. [ICCIT'11]	ATmega128 8-bit	Laser	Round Reduction	R ₀ R ₈ -R ₁₀	2	≈ 1 second
J.M. Dutertre et al. #2 [HOST'12]	Unknown mcu 0.35µm 8-bit	Laser	Round Alteration	$R_0R_8-R_m-R_f$	3	≈ 1 second
J.M. Dutertre et al. #3 [HOST'12]	Unknown mcu 0.35µm 8-bit	Laser	Round Addition	$R_0R_9-R_{m=10}-R_{f=11}$	3	≈ 1 hour & 30 minutes

Proposed Round Modification Analysis on AES

PROPOSED ROUND MODIFICATIONS ANALYSIS

www.emse.fr

C (correct ciphertext) = FR $(M_9) \oplus K_{10}$

PROPOSED ROUND MODIFICATIONS ANALYSIS

1 plaintext
$$= \begin{bmatrix} D \text{ (faulty ciphertext)} = \operatorname{FR} [\operatorname{MR}(M_9) \oplus K'_9] \oplus K'_{10} \\ C \text{ (correct ciphertext)} = \operatorname{FR} (M_9) \oplus K_{10} \end{bmatrix}$$

2 plaintexts $M^{a} M^{b}$

 $\operatorname{FR}^{-1}(D^a \oplus \mathbf{K'}_{10}) \oplus \operatorname{FR}^{-1}(D^b \oplus \mathbf{K'}_{10}) = \operatorname{MC}(C^a \oplus C^b)$

2 hypothese on each K'_{10} byte (2¹⁶ for a 128-bits AES key)

Calculation time : < 1 second

Alternative solution : 3 plaintexts, instead of 2 thus, 1 hypothesis for each K'_{10} byte

Electromagnetic Glitch injection Technique

PRACTICAL ELECTROMAGNETIC GLITCH SETUP

• Pulse amplitude : -200V / +200V

The computer controls both the pulse generator (through a rs-232 link) and the target board (through a usb link).

PRACTICAL ELECTROMAGNETIC GLITCH SETUP

Target Description

- Up-to-date 32-bit microcontroller
- Designed in a cmos 130nm technology
- Based on the arm Cortex-M3 processor.
- Operating frequency is set to 24MHz.
- Can detect several types of hardware faults.

• When a specific type of hardware fault is detected, the processor raises its associated interrupt.

Exception	Description
Hard fault	Error during exception processing
	Has the highest priority
Bus fault	Memory related fault
	For an instruction or data memory transaction
Memory	Triggered by the memory protection unit
Management Fault	Possible access to a restricted memory area
Usage Fault	Fault related to instruction execution
	Undefined instruction, illegal unaligned access, etc.
Clock Security	Error on the high speed external clock
\mathbf{System}	
Programmable	The power supply is under a user-defined threshold
Voltage Detect	

Concrete Results with EMG

EMG PROFILE OF THE TARGET

EM Channel : main strengths

Does **not require depackaging** the target.

Does target the upper metal Layer (Power/Ground or Clock networks).

Logical Effect :

instruction alteration

EXPERIMENTAL OUTLINE

Algorithm 2 Experimental process

Set the relative position of the antenna on top of the	surface of the package
Define a time interval $[t_{min};t_{max}]$ to inject the EMG	Execution normale your calibration
Initialize the pulse generator	[OK] Debut de l'execution du programme
Define a time step Δt	[OK] 1 seconde de pause [OK] Arret de la carte
Initialize a random fixed key and plaintext	I OK J Recuperation des registres [OK] Recuperation du registre xPSR [OK] Recuperation du Fault Status Register
for $t = t_{min}$ step Δt to t_{max} do	[OK] Reset de la carte pour l'execution suivante
microcontroller_reset()	Registres: R0=0x200003F0
launch AES()	R1=0x200003E8 .R2=0x00010000 R3=0x00010800
$send_pulse_with_delay(t)$	R4=0×00000008 R5=0×0800088C
sleep(100ms)	R6=0×00000000 R7=0×00000000
microcontroller_stop()	R8=0×00000000 R9=0×20000160 P10=0-00000000
$results = microcontroller_get_status()$	$\begin{array}{c} R10 = 0 \times 00000000 \\ R11 = 0 \times 0000000 \\ R12 = 0 \times 00000100 \end{array}$
print_and_store(results)	Registres particuliers:
end for	R13 Stack Pointer = 0x200003C8 R14 Link Register = 0xFFFFFF9 R15 Program Counter = 0x08006F6
	xPSR Program Status Register = 0x21000006
	<mark>Flags:</mark> N - Negative = Ø
	Z - Zero = 0 C - Carry = 1
	Q - Saturation = 0
	Interruption: Execution : UsageFault UNDEFINSTR — Undefined instruction UsageFault

Fig. 3. Timing cartography of the EMG effect on the microcontroller

Conclusion

Conclusion

- Round Modification Analysis by targeting the round counter
- Fault induced at the end of the penultimate round
- Execution of a second penultimate round
- EMG Fault model : **instruction alteration**
- High occurrence rate / without triggering hardware interrupts

Attack	Target	Mean	Туре	Encryption sequence	Req. texts	Key search average time
H. Choukri et al. [FDTC'05]	PIC16F877 8-bit	Power Glitch	Round Reduction	$R_0 - R_m$	2	≈ 1 second
J.H. Park et al. [ETRI'11]	ATmega128 8-bit	Laser	Round Reduction	$R_0 - R_1 - R_{10}$	10	≈ 10 hours
K.S. Bae et al. [ICCIT'11]	ATmega128 8-bit	Laser	Round Reduction	R ₀ R ₈ -R ₁₀	2	≈ 1 second
J.M. Dutertre et al. #2 [HOST'12]	Unknown mcu 0.35µm 8-bit	Laser	Round Alteration	$R_0R_8-R_m-R_f$	3	≈ 1 second
J.M. Dutertre et al. #3 [HOST'12]	Unknown mcu 0.35µm 8-bit	Laser	Round Addition	R ₀ R ₉ -R _{m=10} -R _{f=11} ,	3	≈ 1 hour & 30 minutes
Our experiment [COSADE'13]	ARM Cortex-M3 based 130nm 32-bit	EM Glitch	Round Addition	R ₀ R ₉ -R _{m=9} ,-R _{f=10} ,	2	≈1 second

Annexe : RMA Exceptionnel case

RMA – An Exceptional Case

An exceptional case may happen when a byte value in D^a is equal to				
Example:	the correspond	ing byte on the second encr	yption;	
	1.e.	D^a [byte i] = D^b [byte i]		
<i>M^a</i> : 32 43 F6 A8	88 5A 30 8D 31	31 98 A2 E0 37 07 34		
<i>M^b</i> : 19 84 B0 92	95 C8 B1 D9 C4	4E 4D 1E F2 C0 36 5E		
			Round f=10'	
<i>C^a</i> : 39 25 84 1D	02 DC 09 FB DC 1	1 85 97 19 6A 0B 32	К' 10	
<i>C^b</i> : 13 AB D8 4B	7B EA FA 58 47 5	8 48 A5 50 B3 B2 DC		
<i>D^a:</i> 49 4a b5 1f	3b 08 83 <mark>e0</mark> d1 2	21 34 6b 32 cd 31 cb		
D ^b :8c fc 54 6b	3a 46 9e <mark>e0</mark> b7 6	5 6d 0a 92 7b a0 e1		
	_			

D

 $SRoSB(M_{g'})$

RMA – An Exceptional Case

D^a: 49 4a b5 1f 3b 08 83 e0 d1 21 34 6b 32 cd 31 cb D^b: 8c fc 54 6b 3a 46 9e e0 b7 65 6d 0a 92 7b a0 e1

 $\mathsf{SB}^{-1} \cup \mathsf{SR}^{-1} (D^a \oplus K'_{10}) \oplus \mathsf{SB}^{-1} \cup \mathsf{SR}^{-1} (D^b \oplus K'_{10}) = \mathsf{MC} (C^a \oplus C^b)$

2⁸ hypotheses

on K'_{10} [7] (byte [7] of K'_{10}) and **2 hypotheses** on each other K'_{10} byte

calculation time : still less than 1 second

Probability of this exceptional case =

$$1-\frac{\binom{255}{1}}{\binom{256}{1}}\times\frac{\binom{255}{1}}{\binom{256}{1}}\times\dots+\frac{\binom{255}{1}}{\binom{256}{1}}=1-\frac{\binom{255}{256}}{\binom{256}{256}}^{16}\approx\%6.070$$

with 1, 2 or even 3 equal byte values on D^a and D^b , the cryptanalysis has an answer in a short calculation time

In any case, there is a faster solution : using 3 plaintexts, instead of 2

Direction de la Recherche Technologique DSIS / LCS Systèmes et Architectures Sécurisés

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Microélectronique de Provence | 13541 Gardanne T. +33 (0) 4.42.61.67.31 | F. +33 (0) 4.42.61.65.92

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Annexe : Digital IC

Synchronous Digital IC Timing Constraints

| PAGE 30