
Fault attacks on two software countermeasures

Nicolas Moro∗†, Karine Heydemann†, Amine Dehbaoui‡, Bruno Robisson∗, Emmanuelle Encrenaz†
∗Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), F-13541 Gardanne, France - nicolas.moro@cea.fr
†Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005 Paris, France - karine.heydemann@lip6.fr

‡SERMA Technologies, CESTI, F-33615 Pessac, France - a.dehbaoui@serma.com

Abstract—Injection of transient faults can be used as a way
to attack embedded systems. On embedded processors such as
microcontrollers, several studies showed that such a transient
fault injection could corrupt either the data loads from the mem-
ory or the assembly instructions executed by the circuit. Some
countermeasure schemes which rely on temporal redundancy
have been proposed to handle this issue. Among them, several
schemes add this redundancy at assembly instruction level. In
this paper, we perform a practical evaluation for two of those
countermeasure schemes by using a pulsed electromagnetic fault
injection process on a 32-bit microcontroller.

I. INTRODUCTION

In this paper, we experimentally evaluate the robustness of
two software countermeasure schemes against fault injection
on embedded programs. Both countermeasures are designed
at assembly code level and rely on providing some replace-
ment sequences to strengthen some sensitive instructions. To
perform this evaluation, we use a pulsed electromagnetic fault
injection technique. This fault injection technique has turned
out to be an effective way to inject transient faults in a circuit’s
computation [3]. Figure 1 shows an architectural view of the
electromagnetic fault injection platform used in this paper. It
is similar to the one presented in [4].

Generator

control

Debug via Keil ULINKpro

Pulse

Trigger signal

Pulse generator Motorized X Y Z stage Control computer

Motorized stage control

Fig. 1. Electromagnetic fault injection bench

The chosen target is an up-to-date 32-bit microcontroller
designed in a CMOS 130 nm technology based on the ARM
Cortex-M3 processor [5]. Its operating frequency is set to
56 MHz without any cache memory, and no prefetch buffer
is activated. Cortex-M3 processors use a Harvard architecture
and run the ARM Thumb-2 instruction set [6], which contains
both 16-bit and 32-bit instructions. Some 16-bit instructions
can be forced to a 32-bit encoding by using a specific syntax.

II. EVALUATION OF THE COUNTERMEASURES

A. Evaluation approach

We need to define a relevant metric to evaluate the ef-
ficiency of the countermeasures. Since the countermeasure

This work was done while Amine Dehbaoui was with École Nationale
Supérieure des Mines de Saint-Étienne, F-13541 Gardanne, France

sequences add some instructions, the time to execute a full
countermeasure sequence becomes longer than the time to
execute the initial instruction. Thus, the number of vulnerable
points, i.e. the injection times for which a fault injection
attempt is successful, may also increase. Comparing the per-
centage of faulty outputs could appear to be a solution to com-
pare two data sets with different numbers of measurements.
Nevertheless, we assume that the most meaningful metric for
such a comparison is the number of faults that have been
obtained on the destination register. The countermeasure is
really effective if it can overcome the fact that some new
vulnerable points are added and if it can decrease this number
of vulnerable points. Thus, comparing the number of faulty
outputs is probably the most relevant metric for an attacker
since it indicates the number of potential vulnerabilities on an
embedded code.

B. Fault tolerance countermeasure

This countermeasure aims at providing a fault-tolerant
replacement sequence for most of the instruction of an in-
struction set [1]. Such a countermeasure has been designed to
be tolerant to any single instruction skip and does not provide
any protection to the data flow. An example of the use of this
countermeasure is given in Listing 1.

Listing 1. Fault detection countermeasure for a bl <function> instruction
1 adr r1 , <r e t u r n l a b e l >
2 adr r1 , <r e t u r n l a b e l >
3 add l r , r1 , #1 ; Thumb mode requires the
4 add l r , r1 , #1 ; last bit of LR to be set
5 b <f u n c t i o n>
6 b <f u n c t i o n>
7 r e t u r n l a b e l :

We performed some fault injection experiments on four
codes: a bl instruction without countermeasure (100 ns time
interval by steps of 200 ps), a bl.w instruction with forced 32-
bit encoding without countermeasure (100 ns), the replacement
sequence presented in Listing 1 (400 ns) and this replacement
sequence with forced 32-bit encoding (400 ns). Several values
were used for the pulse voltage, from −210 V to −170 V and
from 120 V to 150 V by steps of 5 V. The target circuit crashes
for voltages over 150 V. In this experiment, the subroutine
that is called only modifies r0. Thus, we analyze the number
of faults in r0 at the end of the experiment to evaluate the
efficiency of the countermeasure. The faults on any register
curves correspond to an output in which at least one register
contains a faulty value.

The fault injection results are shown on Fig. 2. We can
observe that applying the countermeasure without forced 32-
bit encoding does not seem to be efficient. Indeed, this

−210−200−190−180−170
0

50

100

150

200

Pulse amplitude (V)

N
um

be
r

of
fa

ul
ty

ou
tp

ut
s No CM, 16-bit, faults on r0 No CM, 16-bit, faults on any register

No CM, 32-bit, faults on r0 No CM, 32-bit, faults on any register

FT CM, 16-bit, faults on r0 FT CM, 16-bit, faults on any register

FT CM, 32-bit, faults on r0 FT CM, 32-bit, faults on any register

120 130 140 150

Fig. 2. Fault injection results for the fault tolerance countermeasure

countermeasure has not been designed to be resistant to two
consecutive instruction corruptions. Because of the memory
alignment in the experiment, in the replacement sequence the
first two adr instructions and later the last two b instructions
are loaded in a single fetch stage. Thus, it seems that such
double corruption happened. Moreover, we can also observe
that no faulty output has been obtained for pulses with a
negative voltage on a single 32-bit bl.w instruction. Nev-
ertheless, such an instruction could still be faulted by using
pulses with a positive voltage. An explanation for such result
can be found in the way instructions are encoded. The 16-bit
subset of the instruction set is very compact (most of the 16-bit
values correspond to one instruction) while the 32-bit subset is
very sparse: very few bit flips can change a 16-bit instruction
into another instruction, but this assertion is not true for a 32-
bit encoding. Finally, for the experiment with a fault tolerance
countermeasure and a forced 32-bit encoding, very few faults
on r0 have been obtained. Even if some faults on some other
registers can still be obtained, this countermeasure appears
to be very effective for both positive and negative glitches.
Applying the countermeasure scheme with a forced 32-bit
encoding is a necessary condition to guarantee its efficiency.

C. Fault detection countermeasure

This countermeasure aims at detecting any single fault,
including instruction skips, some cases of instruction re-
placements and faults on the data flow. As an example, the
countermeasure for a ldr instruction is given in Listing 2. In
this code example, a value is loaded from the Flash memory.
The address of this value is relative to the program counter.

Listing 2. Fault detection countermeasure for a ldr instruction
1 l d r r0 , [pc , #40] ; initial load instruction
2 l d r r1 , [pc , #38] ; duplicated load instruction
3 cmp r0 , r1 ; comparison between r0 and r1
4 bne <e r r o r > ; if r0 != r1, raise an error

We performed some fault injection experiments on four
codes: a single ldr instruction (150 ns time interval by steps
of 200 ps), a single ldr.w instruction with a forced 32-
bit encoding (150 ns), the replacement sequence presented in
Listing 2 (300 ns) and the same replacement sequence with a
forced 32-bit encoding for every instruction (500 ns).

−210−200−190−180−170
0

200

400

Pulse amplitude (V)

N
um

be
r

of
fa

ul
ty

ou
tp

ut
s No CM, 16-bit, faults on r0 No CM, 32-bit, faults on r0

FD CM, 16-bit, faults on r0 FD CM, 16-bit, detected faults

FD CM, 32-bit, faults on r0 FD CM, 32-bit, detected faults

120 130 140 150

Fig. 3. Fault injection results for the fault detection countermeasure

The fault injection results are presented in Fig. 3. The
detected faults curves show the number of calls to the error
subroutine. From a black box approach, we can observe that
applying the countermeasure without forced 32-bit encoding
creates more vulnerable injection times than the initial single
ldr instruction and does not bring any security for negative
glitches. Nevertheless, this countermeasure seems to work very
well for positive glitches. Finally, the countermeasure scheme
appears to be very effective with a 32-bit encoding of the
instructions.

III. CONCLUSION

We have provided a first attempt of practical study of two
assembly-level software countermeasure against fault injection
attacks. Even if those countermeasures are theoretically secure,
it turns out that the level of security they add could be nullified
if their implementation on a target platform is not performed
in the right way. The fault tolerance countermeasure has been
very effective to protect an isolated subroutine call instruction.
Thus, it seems such a sensitive instruction can be significantly
reinforced against fault attacks. Since this countermeasure has
been formally proven resistant to instruction skips, its main
limitation appears to be due to its considered fault model
which might be too simplistic. Otherwise, the fault detection
countermeasure has been designed to protect a smaller set of
instructions and it has been very effective on the considered
test cases.

REFERENCES

[1] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal ver-
ification of a software countermeasure against instruction skip attacks,”
Journal of Cryptographic Engineering, pp. 1–12, 2014.

[2] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni,
“Countermeasures against fault attacks on software implemented AES,”
in Proceedings of WESS 2010. ACM, 2010.

[3] A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria, “Electromagnetic
Transient Faults Injection on a Hardware and a Software Implementations
of AES,” in Proceedings of FDTC 2012. IEEE, 2012.

[4] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic Fault Injection: Towards a Fault Model on a 32-bit
Microcontroller,” in Proceedings of FDTC 2013. IEEE, 2013.

[5] J. Yiu, The Definitive Guide To The ARM Cortex-M3, 2009.
[6] ARM, “ARM Architecture Reference Manual - Thumb-2 Supplement,”

2005.

	Introduction
	Evaluation of the countermeasures
	Evaluation approach
	Fault tolerance countermeasure
	Fault detection countermeasure

	Conclusion
	References

