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Abstract. Fault attacks against embedded circuits enabled to define
many new attack paths against secure circuits. Every attack path re-
lies on a specific fault model which defines the type of faults that the
attacker can perform. On embedded processors, a fault model in which
an attacker is able to skip an assembly instruction is practical and has
been obtained by using several fault injection means. To handle this is-
sue, some countermeasure schemes which rely on temporal redundancy
have been proposed. Nevertheless, double fault injection in a long enough
time interval is practical and can bypass those countermeasure schemes.
Some fine-grained other countermeasure schemes have been proposed for
specific instructions. However, to the best of our knowledge, no approach
that enables to secure a generic assembly program in order to make it
fault-tolerant to instruction skip attacks has been formally proven yet.
In this paper, we provide a fault-tolerant replacement sequence for every
instruction of the whole Thumb2 instruction set and provide a formal
proof of this fault tolerance. This simple transformation enables to add
a reasonably good security level to an embedded program and makes
practical fault injection attacks much harder to achieve.

Keywords: microcontroller, fault attack, instruction skip, countermeasure, for-
mal proof

1 Introduction

Physical attacks were introduced in the late 1990s as a new way to break cryp-
tosystems. Unlike classical cryptanalysis, they use some weaknesses in the cryp-
tosystems’ implementations as a way to break them. Among them, faults attacks
were introduced in 1997 by Boneh et al. [1]. In this class of attacks, attackers
try to modify a circuit’s environment in order to change its behaviour or induce
faults into its computations [2]. This attack principle was first introduced against
cryptographic circuits but can be used against a larger set of embedded circuits.



Many physical means can be used to induce such faults: laser shots [3] [4], over-
clocking [5], chip underpowering [6], temperature increase [7] or electromagnetic
glitches [4] [8].

Among fault attacks, three subclasses can be distinguished: differential fault
analysis, safe error and algorithm modifications. Differential fault analysis (DFA)
aims at retrieving some ciphering keys by comparing correct ciphertexts with
ciphertexts obtained from a faulted encryption [1] [9]. Safe-error attacks are
based on the fact that a fault injection may have or not have an impact on the
output [10]. Finally, algorithm modifications target an embedded processor and
aim at injecting faults into an embedded program’s control flow [11] [12].

Those attack schemes rely on an attacker’s fault model which defines the
set of faults an attacker can perform [13,14]. As a consequence, countermeasure
schemes must take this fault model aspect into account. On microcontrollers and
embedded processors, the fault model in which an attacker can skip an assembly
instruction has been observed on different architectures [11] [15] and for different
fault injection means [12] [8] [16]. As a consequence, this fault model is a realistic
threat for an embedded program.

In this paper, we consider this instruction skip fault model and propose a
countermeasure scheme that could enable to secure any assembly code against
instruction skip faults. Some countermeasures based on multiple executions of
a function have already been proposed and can theoretically handle this issue
[2]. However, this kind of high granularity temporal redundancy is vulnerable to
multiple fault attacks. Even with commonly-used low-cost fault injection means,
a high temporal accuracy can be obtained by an attacker, and performing the
same fault injection on several executions of an algorithm is practical [16]. On
the contrary, performing a multiple fault on two instructions separated by a few
clock cycles is significantly harder [17] while still possible. Indeed, it requires
a much more costly fault injection equipment and very high synchronization
capabilities. It is then not yet considered as a threat.

Our approach uses an instruction-scale temporal redundancy to ensure a
fault-tolerant execution of an embedded program. It is based on the statement
that performing two faults on two instructions separated by few clock cycles is
hardly feasible. In this paper, we propose a fault-tolerant replacement sequence
for each instruction of the whole Thumb2 instruction set. We also show how to
formally prove the fault tolerance of replacement sequences by using a model-
checking tool. By using such a fine-grained redundancy scheme, it is then possible
to strengthen any assembly program against fault attacks without any specific
knowledge about it. In the experimental results, we evaluate the overhead in-
duced by fault tolerance and show that it can be reduced by only applying this
countermeasure scheme to the sensitive parts of an implementation.

The rest of this paper is organized as follows. Section 2 introduces our fault
model and gives details about some related research papers. Section 3 introduces
our countermeasure scheme and details our replacement sequences. Section 4
explains the approach we use for the formal proof. Finally, section 5 evaluates
the efficiency of our countermeasure scheme on an AES implementation.



2 Related works and fault model

This section is dedicated to related works. First, fault models are discussed in
section 2.1. Countermeasure schemes that have previously been proposed are
addressed in section 2.2. Section 2.3 presents some related research papers on
formal verification.

2.1 Fault model

On embedded processors, a fault model in which an attacker can skip an assem-
bly instruction or equivalently replace it by a NOP has been observed on several
architectures and for several fault injection means [13]. On a 8-bit AVR micro-
controller, Schmidt et al. [11] and Balasch et al. [12] obtained instruction skip
effects by using clock glitches. Dehbaoui et al. obtained the same kind of effects
on another 8-bit AVR microcontroller by using electromagnetic glitches [8]. On
a 32-bit ARM9 processor, Barenghi et al. obtained some instruction skip effects
by using voltage glitches. On a more recent 32-bit ARM Cortex-M3 processor,
Trichina et al. were able to perform instruction skips by using laser shots [16].
Moreover, this fault model has also been used as a basis for several cryptanalytic
attacks [18] [14]. As a consequence, it is considered as a common fault model an
attacker may be able to perform [19].

A more generic fault model is the instruction replacement model, in which
NOP replacements correspond to one possible case. In some previous experiments
on an ARM Cortex-M3 processor by using electromagnetic glitches, we have ob-
served a corruption of the instructions binary encodings during the bus transfers
[20] leading to such instruction replacements. Actually, instruction skips corre-
spond to specific cases of instruction replacements: replacing an instruction by
another one that does not affect any useful register has the same effect as a NOP

replacement and so is equivalent to an instruction skip. Many injection means
enable to perform instruction replacement attacks [20] [12]. Nevertheless, even
with very accurate fault injection means, being able to precisely control an in-
struction replacement is a very tough task and, to the best of our knowledge, no
practical attack based on such a fault model has been published yet.

As a conclusion, we consider in this paper that an attacker is able to skip an
instruction.

2.2 Countermeasure schemes

Several countermeasures schemes have been defined to protect embedded pro-
cessor architectures against specific fault models. At a hardware level, many
countermeasures have been proposed. As an example, Nguyen et al. [21] propose
to use integrity checks to ensure that no instruction replacement took place.

Software-only countermeasure schemes, which aim at protecting the assembly
code, are more flexible and avoid any modification of the hardware. Against fault



attacks, the most common software fault detection approach relies on function-
level temporal redundancy [2]. For example, this principle applied to a crypto-
graphic implementation can be achieved by calling twice the same encryption
algorithm on the same input and then comparing the outputs. For encryption
algorithms, an alternative way is to call the deciphering algorithm on the out-
put of an encryption and to compare its output with the initial input. These
approaches enable fault detection and involves doubling the execution time of
the algorithm. Triplication approaches with voting enabling fault tolerance at
the price of tripling the execution time of the whole algorithm has also been
proposed [2].

At an algorithm level, in [22], Medwed et al. propose a generic approach based
on the use of specific algebraic structures named AN+B codes. Their approach
enables to protect both the control and data flow. An application to an AES
implementation has also been detailed in [23].

At an assembly level, in [17], Barenghi et al. propose three countermea-
sure schemes based on instruction duplication, instruction triplication and par-
ity checking. Their approach enables to ensure a fault detection for the load
instructions against instruction skip or transient data corruption fault models.
Our scheme enables a fault tolerance only against the instruction skip fault model
but for every instruction of the whole considered instruction set. Moreover, our
countermeasure scheme has been formally proven fault tolerant.

2.3 Formal verification of software countermeasures

Formal methods and formal verification tools have been used for cryptographic
protocols’ verification of to check that an implementation could meet the Com-
mon Criteria security specifications [24]. However, to the best of our knowledge,
very few formal proof approaches to check the correctness of software counter-
measure schemes against fault attacks have been proposed yet. The most signifi-
cant contribution has been proposed by Christofi et al. [25]. Their approach aims
at performing a source code level verification of the effectiveness of a counter-
measure scheme on a CRT-RSA implementation by using the Frama-C program
analyzer. In this paper, we formally prove all our proposed countermeasures
against an instruction skip fault model at an assembly level.

3 Countermeasure scheme

The proposed countermeasure scheme aims at ensuring a fault-tolerant execution
of an assembly code against instruction skip faults. The approach we propose re-
lies on providing a formally proven fault-tolerant replacement sequence for each
assembly instruction of a whole instruction set. We chose the ARM Thumb2
instruction set [26] since ARM is a widely used target architecture for embedded
processors. Thumb2 is actually the successor to both ARM and Thumb instruc-
tion sets, and contains both 16-bit and 32-bit instructions. In this section, we
present some of the replacement sequences we have defined for each instruction
of the Thumb2 instruction set. This fine-grained redundancy scheme enables to



strengthen any assembly code against fault attacks without any specific knowl-
edge about it.

3.1 Instruction classes

We have defined a fault-tolerant replacement sequence for each instruction and
each encoding of the Thumb2 instruction set. This instruction set contains 151
instructions, and each instruction has up to four different encodings. For many
instructions, the replacement sequence is very simple. However, this sequence
can become much more complex for some specific instructions. According to the
replacement sequences found, the instructions in the Thumb2 instruction set can
be divided into three classes. Every class is associated to one kind of replacement
sequence. These three classes are summarized in table 1.

Table 1. Instruction classes in the Thumb2 instruction set

Instruction class Examples Replacement scheme

Idempotent instructions mov r1,r8 Instruction duplication
add r3,r1,r2

Separable instructions add r1,r1,#1 Use of extra registers and decomposition
push {r4,r5,r6} into an idempotent instruction sequence

Specific instructions bl <function> Replacement sequence
it blocks specific to each instruction
adcs r3,r1,r2

The first class is composed of the idempotent instructions which only need to
be duplicated to provide a fault tolerance. The second class gathers the instruc-
tions that are not idempotent but can be replaced by an equivalent sequence
of idempotent instructions. The third class gathers some specific instructions
that cannot easily be replaced by a list of idempotent instructions but for which
a specific replacement sequence is possible. This last class also contains the in-
structions for which no replacement sequence that ensures a fault tolerance and a
correct execution in any case can be provided. The solution for these instructions
is either to avoid the compiler to use them or to use a fault detection approach.
The following section gives more details about those classes. Moreover, it pro-
vides some examples of replacement sequences for every class.

3.2 Individual instruction replacement sequences

Idempotent instructions Idempotent instructions are the instructions that
have the same effect when executed once or twice. If all the source operands are
different from the destination operands, and if the value written into the destina-
tion operands does not depend on the instruction’s location in the code, then the
instruction is said to be idempotent. For such instructions, the countermeasure is
a simple instruction duplication. The overhead for such a duplication is twofold:
an overhead equals to the instruction size in terms of code size and a perfor-
mance overhead that is equal to the time execution time for the instruction.



Table 2 gives some examples of idempotent instructions and their associated
replacement sequence.

Table 2. Replacement sequences for some idempotent instructions

Instruction Replacement sequence

mov r1,r8 mov r1, r8

(copies r8 into r1) mov r1, r8

ldr r1, [r8, r2] ldr r1, [r8, r2]

(loads the value at the address r8+r2 into r1 ldr r1, [r8, r2]

str r3, [r2, #10] str r3, [r2, #10]

(stores r3 at the address r2+10) str r3, [r2, #10]

add r3,r1,r2 add r3,r1,r2

(puts r1+r2 into r3) add r3,r1,r2

Separable instructions In the considered instruction set, some instructions
are not idempotent but can be replaced by a sequence of fully idempotent in-
structions whose execution gives the same result. Once this separation is per-
formed, each idempotent instruction of the replacement sequence can then be
duplicated. This class gathers the instructions whose destination register is also
a source register. To replace these instruction by a sequence of fully idempotent
instructions, an extra register has to be used. This register has to be available at
this location in the code: any dead register can be used3. Listing 1.1 shows the
replacement sequence for an add r1, r3 instruction. For this class of instruc-
tions, the overhead cost brought by our countermeasure scheme depends on the
instruction to replace. There is an overhead cost in code size, performance and
register pressure (since the replacement sequence needs some extra registers).
For the add r1, r3 instruction example, one extra register is needed and 3 ex-
tra instructions, the overhead cost in terms of code size is between 6 and 10
bytes (depending on the encoding used for the add instruction).

Listing 1.1. Replacement sequence for
the non idempotent add r1, r3 instruc-
tion

1 ; we assume rx is an

2 ; available register

3 mov rx , r1
4 mov rx , r1
5 add r1 , rx , r3
6 add r1 , rx , r3

Listing 1.2. Replacement sequence for
the push {r1, r2, r3, lr} instruction

1 ; the push{} instruction

2 ; is equivalent to the

3 ; stmdb sp!,{} instruction

4 stmdb sp , { r1 , r2 , r3 , l r }
5 stmdb sp , { r1 , r2 , r3 , l r }
6 sub .W rx , sp , #16
7 sub .W rx , sp , #16
8 mov sp , rx
9 mov sp , rx

3 It turns out that, in the ARM calling conventions, the r12 register can be used to
hold intermediate values and does not need to be saved on the stack. Thus, this
register can be used as a temporary register for such replacement scenarios.



Stack manipulation instructions Some memory access instructions update the
address register before or after (stmdb4/ldmia5) a memory access. As a conse-
quence, this address register is both a source and a destination register for such
an instruction. This is notably the case of the stack manipulation instructions
(push and pop). These instructions respectively write or read on the stack and
decrement or increment the stack pointer. Such instructions can be separated
into a sequence of instructions that only perform one operation at a time, either
a memory access or an address register update. The push instruction can be de-
composed into instructions that first write the register to save on the stack and
then decrement the stack pointer. As decrementing the stack pointer implies
reading and writing the same register, this operation is decomposed into two
steps in order to get a sequence of idempotent instructions. Such a replacement
sequence for the push instruction is detailed on listing 1.2. This replacement
requires 1 extra register and has a code size and performance overhead of 5
instructions.

Listing 1.3. Replacement sequence for umlal rlo, rhi, rn, rm instruction that
performs rhi:rlo = rn*rm + rhi:rlo

1 mrs rt , APSR ; save

2 mrs rt , APSR ; flags

3 umull rx , ry , rn , rm
4 umull rx , ry , rn , rm
5 adds rz , rx , r l o
6 adds rz , rx , r l o
7 addc rx , ry , r h i
8 addc rx , ry , r h i
9 mov r l o , rz

10 mov r l o , rz
11 mov rh i , rx
12 mov rh i , rx
13 msr APSR, r t ; restore

14 mrs APSR, r t ; flags

umlal instruction The umlal instruction multiplies two source registers and then
adds the content of the concatenation of the two 32-bit destination registers. The
final result is written into the two 32-bit destination registers. As a consequence,
this instruction has registers that are both source and destination. However, it
can be decomposed. First, a multiply instruction whose result is a 64-bit value
can be performed. Then the 64-bit addition has to be decomposed into several
instructions. This requires to propagate the carry set by adding the 32 least
significant bits (by using an adds instruction) to the addition of the 32 most
significant bits by using an adc instruction. However the adds instruction sets
the flags whereas the umlal does not: this sequence of instructions is not strictly
equivalent to the umlal instruction and may be wrong if the flags are used after
the umlal instruction without being set. As a consequence, it is necessary to save

4 stmdb stores multiple registers into the memory in a descending direction
5 ldmia loads a memory segment into multiple registers in an ascending direction



the flags before the sequence and restore them after it. Performing such a saving
requires 4 extra instructions. The corresponding replacement sequence for this
instruction is given in listing 1.3. This countermeasure requires 4 extra registers
and replaces the initial instruction by 14 instructions. This replacement sequence
is actually the most costly one of the whole instruction set, both in term of extra
registers and extra instructions.

Specific instructions Some instructions cannot easily be replaced by a list
of idempotent instructions. These instructions can still be decomposed into an
equivalent sequence of instructions that can be duplicated to enforce a robust
execution. There are also some instructions for which no fault-tolerant coun-
termeasure in any case can be found. Some of them can still be replaced by a
fault-tolerant sequence under some constraints. In this section, we give details
and provide some examples for both kinds of such specific instructions.

bl subroutine call instruction The subroutine call instruction (bl) performs a
jump and writes the return pointer into the link register (r14). Duplicating a
bl instruction would induce two subroutine calls if no attack is performed. A
possible solution is to manually put the return address into the link register and
then perform an unconditional jump. As the Thumb execution mode requires
the last bit of an instruction address to be set, this bit must be set before the
unconditional jump to the subroutine code, as shown on listing 1.4.

Listing 1.4. Replacement sequence for
a bl <function> instruction.

1 ; Thumb mode requires

2 ; the last bit to be set

3 adr ry ,< r e t u r n l a b e l >
4 adr ry ,< r e t u r n l a b e l >
5 add l r , ry , 1
6 add l r , ry , 1
7 b <funct ion>
8 b <funct ion>
9 r e t u r n l a b e l :

Listing 1.5. Replacement sequence for adcs

r1, r2, r3 instruction

1 ; This sequence is valid

2 ; if the flags are not alive

3 mrs rx , APSR ; save

4 mrs rx , APSR ; flags

5 adcs r1 , r2 , r3
6 msr APSR, rx ; restore

7 msr APSR, rx ; flags

8 adcs r1 , r2 , r3

Instructions that both read and write the flags Instructions that read and write
the flags cannot easily be replaced by a fault-tolerant sequence of instructions.
For example, the adsc instruction performs an addition between two source
operands (two registers or one register and an immediate value) and the carry
flag. The result is written into a destination register and the flags (carry, negative,
overflow and zero) are updated. Duplicating such an instruction is not correct
since the second adcs would use the carry set by the first adcs instruction instead
of the initial carry value. If the flags are read before being written whatever the
execution path after the adcs instruction is, then no simple replacement sequence
is possible, the code has to be modified. Otherwise, if the flags are written before
being used again, a replacement sequence is possible. Such a sequence consists in



saving the flags values before the first adcs instruction and restoring these values
before the second adcs instruction. This replacement sequence is illustrated in
listing 1.5.

Listing 1.6. Example of it block

1 i t te NE
2 addne r1 , r2 , 10
3 eorne r3 , r5 , r1
4 moveq r3 , #10

Listing 1.7. Code equivalent to the it

block above

1 b . eq e l s e
2 add r1 , r2 , 10
3 eor r3 , r5 , r1
4 b cont inuat i on
5 e l s e
6 mov r3 , #10
7 cont inuat i on

Listing 1.8. Code of listing 1.7 strength-
ened with our individual instruction coun-
termeasure scheme

1 b . eq e l s e
2 b . eq e l s e
3 add r1 , r2 , 10
4 add r1 , r2 , 10
5 eor r3 , r5 , r1
6 eor r3 , r5 , r1
7 b cont inuat i on
8 b cont inuat i on
9 e l s e

10 mov r3 , #10
11 mov r3 , #10
12 cont inuat i on

it blocks Thumb2 provides conditional execution of instructions through it

blocks. An it instruction specifies a condition and up to the 4 following instruc-
tions can be conditionally executed according to this condition or its inverse.
it blocks correspond to if-then or if-then-else higher-level constructions and are
useful when the branches of a conditional statement are composed of a limited
number of instructions. Listing 1.6 gives an example of such an it block. The
simplest solution for such blocks is to first transform the it block into an equiv-
alent classical if-then-else structure such as the one presented on listing 1.8 and
then apply the countermeasure scheme to each instruction, as illustrated on list-
ing 1.7. However, we have defined a specific replacement sequence for it blocks
but this replacement has some limitations and can quickly become more costly
than its equivalent form with an if-then-else structure. Due to the lack of space,
this replacement sequence is presented in appendix ??.

4 Formal proof of fault tolerance

In this section, we present how we formally prove the fault tolerance specification
for the countermeasure replacement sequences we presented in section 3. Details
about the modelings we use for the proof approach are presented in 4.1 and
proof examples for some replacement sequences are presented in 4.2.

4.1 State machine modeling and specification to prove

A program acts as the application of transformations of the values stored in
the set of registers or in memory. Each instruction of the program acts like a
function whose input is a registers and memory configuration and produces a
new registers and memory configuration. The program can be represented as



a transition system whose states are registers and memory configurations and
transitions mimic the state transformation applied by the instructions.

Individual instruction modeling Instead of proving the fault tolerance for
a complete program, our model checking approach consists in proving the fault
tolerance for each replacement sequence proposed in our countermeasure scheme.
Indeed, it is sufficient to certify that the output state (register and memory con-
figuration) after the replacement sequence execution (with or without a fault
injection) is equivalent to the normal output state after the initial instruction
execution. As this output state is also the input state for the following instruc-
tion, using such a proof approach certifies that the next instruction will start
from the right configuration. Moreover, this enables to use model checking while
avoiding state-explosion problem.

State machine modeling We can model the execution of a sequence of in-
structions by a transition system TS. We define this transition system as TS =
{S, T, S0, Sf , L}. S is the set of states, T the set of transitions T : S → S, S0

and Sf are the subsets of S which respectively gather the initial states and final
states. The final states from Sf are absorbing states. A state from S is defined by
the value of the different registers (from the set of registers R which includes the
program counter) and processor flags (from the set of flags F ). Each transition
from T is defined by the effect of an instruction on the registers and processor
flags. L is a set of labels which correspond to the values the program counter
can take. An example of such a transition system for the add r1, r2, r3] in-
struction is shown in Fig. 1. To prove that a countermeasure for an instruction i
is robust against a fault, we build two transition systems: a first one for the ini-
tial instruction m(i) and another one for its strengthened replacement sequence
mcm(i).

# input r2, r3, flags

# output r1, flags

pc_init : add r1, r2, r3

pc_final : next_instruction

pc init, pc final ∈ L
(R,F ) is the current state
(R′, F ′) is the next state
t : (R,F ) → (R′, F ′) with
R.pc = pc init
R′.r1 = R.r1 + R.r2
R′.pc = pc final

Fig. 1. Transition system for the add r1, r2, r3 instruction

Fault modeling In any transition system mcm(i), skip fault or data transient fault
may occur. An instruction skip fault is modeled by a transition from a state to
any following one. Such a faulty transition only modifies the program counter. We
add to the whole transition system a skip instruction faulty transition between
every pair of adjacent states. As we assume that only one skip instruction fault
injection may occur, every fault transition is guarded with a boolean which
identifies that a fault has already occurred.



Flags and registers modeling The set of registers is composed of the general-
purpose registers (r0-r12), the stack pointer (r13), the link register (r14) and
the program counter (r15). The 5 processor flags are: C (carry), N (negative), Z
(zero), V (overflow), Q (saturation). These flags can be set by some instructions
and are used by several others. The conditional jumps are among the instructions
that use those flags. Each flag is modeled as a 1-bit register. All the other registers
are modeled as 4-bit registers. This width is sufficient to model the arithmetic
and logic operations as well as the flags computations and enables to keep a
reasonable complexity for the model checker. Moreover, modeling all the registers
is not necessary since an instruction only reads a subset of the registers and writes
on the destination registers. Besides, according to our fault model, the registers
that are not modified by an instruction cannot be modified by a fault. Thus, for
a given m(i) or mcm(i), the set of registers R is only composed of the subset
of registers that are manipulated by i or its replacement sequence cm(i). Newly
introduced registers in cm(i) are supposed to be dead after the occurrence of
the instruction i in the initial program.

Memory modeling Since in our fault model we assume the memory cannot be
corrupted, modeling the memory is not relevant. To ensure that a write to the
memory took place, we only need to ensure that the corresponding instruction
has been executed at least once. As explained later in this section, we add a
counter variable to m(i) and mcm(i) in order to achieve this. For the loads from
the memory, we use symbolic values as the values cannot be corrupted and they
also do not matter since the formal proof consists in checking the equivalence for
any value. The important point is to give the same symbolic value to any loads
at a given address for the transition system m(i) (when i is a load instruction)
and for mcm(i). This is achieved by adding a variable for each memory address
that is read by i and cm(i) to both transition systems. These variables contain
the needed symbolic values.

Vis model checker We used the Vis model checker6 to prove the fault tolerance
of our countermeasure scheme. This tool can take as input a transition system
described with a subset of the Verilog hardware description language. Using Ver-
ilog is convenient to model transition systems which manipulate registers and
bit vectors. The Vis model checker supports symbolic model checking techniques
which enable to perform the proof in a symbolic way without having to enumer-
ate each value for the registers. The proofs presented in this paper required less
than one second to compute.

Specification to prove To prove the equivalence of the output of an instruction
and its replacement sequence, we prove the validity of logic formulas on the two
modelings. To perform such a proof, we use a specific construction in which the
two transition systems m(i) and mcm(i) have the same values for the set of
registers R (except for the program counter), the set of flags F and the symbolic

6 http://vlsi.colorado.edu/˜vis/



values (for the memory loads) in their initial states. Such constructions are
presented in Fig. 2, 3 and 4. We need to prove that m(i) and mcm(i) always
reach a final absorbing state. Moreover, we also need to prove that, when m(i)
and mcm(i) reach a final state, the values for the set of alive registers R′ (except
for the program counter) and flags F ′ are similar. Such properties to check are
expressed with the CTL temporal logic.

4.2 Formal proof of fault tolerance for some replacement sequences

PC0

add R1, R3

R1 = R1 + R3

PC = PC1

PC = PC0, R1 = V1, R3 = V3, FLAGS =  FLAGS_VALUE

ADD CM(ADD)

PC0

add R2, R1, R3
R2 = R1 + R3
PC = PC0_1

PC = PC0_2
fault

add R2, R1, R3

R2 = R1 + R3

PC = PC0_2

mov R1, R2

R1 = R2

PC = PC0_3

mov R1, R2

PC = PC1

R1 = R2
PC = PC1

fault

PC = PC0_3

fault

add r2, r1, r3

add r2, r1, r3

mov r1, r2

mov r1, r2

add r1, r3

PC = PC0_1
fault

PC0_1

PC0_2

PC0_3

PC1

PC1

P1: AF(ADD.PC = PC1)
P2: AF(CM(ADD).PC = PC1)
P3: AG(((ADD.PC=PC1)*(CM(ADD).PC=PC1)) =>

ADD.R1 = CM(ADD).R1 &
ADD.FLAGS = CM(ADD).FLAGS)

Fig. 2. Modeling one non idempotent in-
stance of the add instruction and its coun-
termeasure

fault

PC0

PC1

PC = PC1

cpt++

str R3, [R1, R2]

STR

PC = PC0, R1 = V1, R2 = V2, FLAGS =  FLAGS_VALUE, cpt = 0

CM(STR)

str R3, [R1, R2]
cpt++
PC = PC0_bis

PC0

str R3, [R1, R2]

cpt++

PC = PC1

str r3, [r1, r2]
str r3, [r2, r1]

str r3, [r1, r2]

PC1

PC0_bis

PC = PC0_bis

fault

PC = PC1

P1 : AF(STR.PC=PC1)
P2 : AF(CM(STR).PC=PC1)
P3 : AG((STR.PC=PC1 * CM(STR).PC=PC1) =>

(CM(STR).cpt = 2 + CM(STR).cpt = 1))

Fig. 3. Modeling one idempotent instance
of the str instruction and its countermea-
sure

Idempotent and separable instructions The left part of Fig. 2 shows the
state machine corresponding to the transition system for a non-idempotent add
r1,r3 instruction. The program counter is updated and depending on the in-
struction, the registers or the flags may be updated too. The replacement se-
quence uses a dead register r2 and two extra mov instructions to write the result
to the destination register r1. Its transition system is modeled by the state ma-
chine on the right part of Fig. 2. To prove that the replacement sequence is fault
tolerant against a possible instruction skip, both state machines are fed with the
same values for the source registers (r1 and r3) and flags. Then, the validity of
three CTL logic formulas has been checked with the Vis model checker. P1 and
P2 express the fact that in both state machines any path from an initial state



goes to a final state. P3 expresses the fact that in this final state, for all possible
values in the source registers, the values in r1 and the flags are identical in m(i)
and mcm(i). Fig. 3 presents the transition systems for an idempotent memory
write, an str r3, [r1, r2] instruction, and its replacement sequence. In this
case, as the instruction writes the content of r3 to the memory at the address
r1+r2, no proof is needed on the value inside the registers. We only need to make
sure that at least one str instruction has been executed. A counter variable is
added to the definition of a state. This counter is set to 0 and is incremented by
any transition which corresponds to a str instruction. P1 and P2 express the
fact that any path goes to the last state. P3 expresses the fact that the number
of writes made by the replacement sequence greater or equal to the number of
writes made by the initial instruction (which is equal to 1).

      => ((BL.cpt = 1) * CM(BL).cpt = BL.cpt)))

addr ry, <return_label>

addr ry, <return_label

b @fct

b @fct

add lr, ry, 1

add lr, ry, 1

PC0

PC1

@fct

PC0

PC0_1

PC0_2

PC = PC0 , cpt = 0

cpt++

addr ry, <return_label>

fault
PC = PC0_2

PC = PC0_1
fault

bl @fct

Ry = PC1
PC = PC0_1

Ry = PC1
PC = PC0_2

PC = @fct

LR = PC1

PC = LR

fault

fault
PC = PC0_4

PC = @fct

@fct

cpt++

b @fct

b @fct

PC1

return_label :

PC = PC1
fault

PC = PC0_5
fault

PC = @fct

( PC = <return_label>)

PC0_3

PC0_4

PC0_5

PC = PC0_3
PC = PC0_3

PC = PC0_4

add lr, ry, 1

addr lr, ry, 1

addr ry, <return_label>

LR = Ry + 1

LR = Ry + 1

BL CM(BL)

Properties to be checked

P3 : 

P2 : AF(BL.PC = PC1)

P1 : AF(BL.PC = PC1)

AG( ((BL.PC = PC1) *(CM(BL).PC = PC1))

Fig. 4. Transition systems for the bl instruction and its replacement sequence

Specific instructions

Subroutine call: the bl instruction Figure 4 shows the state machines for the
bl instruction and its replacement sequence. In both corresponding transition
systems, we have added a label @fct to model the target of the subroutine call.
Transitions from a state in which PC = @fct assign the link register to the
PC. Such a transition models the return of the function and also increments a
counter. Then, properties P1 and P2 to be checked by the model checker express
that any path from an initial state goes to a final state. Property P3 expresses
the fact that in a final state the number of calls to the function (the counter
values) are the same. Validity of property P3 ensures that the function has been



executed only once while validity of P1 and P2 ensures that the control flow
comes back to the calling function.

Instructions that read and write the flags For the adcs instruction and its re-
placement sequence, as presented in listing 1.5, the CTL properties are the same
as the ones that were used for the add instruction. However, the property that
deals with the equality of the destination register and the flags is not valid if a
fault targets the last adcs instruction. Relaxing the constraint on flags equality
(expressed as LIGHT RESULT below) makes this property valid as shown with
the output of the Vis model checker in Fig. 5. To sum up, this countermeasure
can only be used if the flags are not used before being set again after the adcs

instruction.

MC: formula passed - AG(AF(adcs.pc=PC1))

MC: formula passed - AG(AF(cm(adcs).pc=PC1))

MC: formula passed - AG(((adcs.pc=PC1*cm(adcs).pc=PC1)->LIGHT_RESULT=1))

MC: formula failed - AG(((adcs.pc=PC1*cm(adcs).pc=PC1)->RESULT=1))

Fig. 5. VIS Model Checker output for the equivalence checking of the adcs instruction

5 Application to an AES implementation

In this section, we applied our countermeasure scheme to an implementation
of the AES-128 symmetric encryption algorithm. In our implementation, every
round key is calculated before the associated AddRoundKey operation. We pro-
vide an estimation of the overhead cost brought by our countermeasure scheme
and perform an exhaustive instruction skip simulation on an ARM Cortex-M3
microcontroller to confirm the effectiveness of our approach. The chosen target
is an up-to-date 32-bit microcontroller based on the ARM Cortex-M3 processor
[27]. This microcontroller uses an ARMv7-M Harvard architecture and runs the
Thumb2 instruction set [26].

Estimation of the overhead cost The overhead cost in terms of clock cycles
and code size for two implementations that use our countermeasure scheme is
shown on table 3. In the first implementation, the whole code has been strength-
ened with our methodology. Both overhead costs are high with this implemen-
tation. Another approach consists in applying our countermeasure to the last
two rounds. In terms of cryptanalysis, fault injections are supposed to be harder
to exploit if the fault does not target the last two rounds. This last scenario
is just an example of a possible optimization. It enables to reduce the clock
cycles overhead by strengthening some specific parts of an algorithm but some
cryptanalysis attacks may still exist against such an implementation.

The overhead cost brought by our countermeasure scheme is high, but re-
mains comparable to the one brought by classical algorithm triplication or other
software approaches for fault tolerance. However, unlike such classical algorithm
duplication or triplication approaches, our countermeasure scheme should be re-
sistant to double fault attacks in a time interval longer than a few clock cycles.



Table 3. Countermeasures overhead for an AES implementation

Clock Relative Code Relative
cycles increase size increase

AES - without countermeasure 9595 490 bytes

AES - whole code with CM 20503 113.7 % 1480 bytes 202 %

AES - last two rounds with CM 11374 18.6 % 1874 bytes 282.5 %

6 Conclusion

In this paper, we have presented a countermeasure scheme that enables to
strengthen an embedded program and make it tolerant to instruction skip faults.
In our countermeasure scheme, we have build a fault-tolerant replacement se-
quence for each instruction of the whole Thumb2 instruction set. The instructions
can be separated into three classes, which all have their dedicated replacement
sequences. We have also provided a formal proof in order to guarantee the cor-
rectness and the fault tolerance of our replacement sequences for each class of
instructions.

Finally, we do not claim our scheme enables a full protection against fault
attacks. Nevertheless, such an approach enables to add a reasonably good se-
curity level to an embedded program, without requiring any extra hardware
countermeasure and any specific knowledge about the embedded program. The
overhead cost brought by using such a countermeasure is comparable to the extra
cost brought by using classical algorithm-level temporal redundancy approaches
and can be reduced with a more accurate knowledge about the sensitive parts
that should be protected. Moreover, using a very fine-grained redundancy at the
instruction scale makes the multiple fault attacks less practical with a reasonable
cost equipment.

In future works, we will try to extend the fault model to a global bus corrup-
tion fault model in which data loads from the memory can also be corrupted. This
fault model extension will require some changes in our fault tolerance proofs. Fur-
thermore, we also aim at performing a practical evaluation of our countermeasure
scheme by trying to attack a secured implementation on a real microcontroller
with real fault injection means.
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